Note to Reader - Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products (PN 1326)

In 2014 the Canadian Standards Association published *CAN/CSA-B837-14 – Collapsible Fabric Storage Tanks (bladders)*. When CCME’s Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products was published in 2003 there was no recognized standard for the design and construction of collapsible fabric storage tanks. Readers are advised to consult with the federal, provincial or territorial authority having jurisdiction to see whether *CAN/CSA-B837-14* applies to their area of interest.

This code references Underwriters Laboratories of Canada (ULC) standards which are periodically updated. With this note CCME attempts to provide information on ULC updates, replacements and withdrawals since publication of the Code. Confirm all standards with ULC.

October 2015 – ULC Update

January 2013 – ULC Replacements and Withdrawals Update

Underwriters Laboratories of Canada (ULC) has published the First Edition CAN/ULC-S661-10, Standard for Overfill Protection Devices for Flammable and Combustible Liquid Storage Tanks. This standard supersedes ULC/ORD-C58.15-1992, Overfill Protection Devices for Flammable Liquid Storage Tanks, referenced in Table 1 and Sentences 3.3.4(1)(e) (ii), 3.6.2, and 4.3.2 of the Code. Refer to ULC Standard Bulletin 2011-09 for further information.

Underwriters Laboratories of Canada (ULC) has published the First Edition CAN/ULC-S663-11, Standard for Spill Containment Devices for Flammable and Combustible Liquid Aboveground Storage Tanks. This standard replaces and supersedes ULC/ORD-C142.19.94, Spill Containment Devices for Aboveground Flammable and Combustible Liquid Storage Tanks, referenced in Table 1 and Sentence 8.7.2(b) of the Code. Refer to ULC Standard Bulletin 2011-10 for further information.

Effective August 23, 2012, Underwriters Laboratories of Canada (ULC) have withdrawn Technical Supplements for the Refurbishing of Underground and Aboveground Tanks:
- ULC-601(A) - 2001, referenced in Table 1 and Sentence 3.7.1(1)(a) and 9.7.2(2)(b)
- ULC-603(A) - 2001, referenced in Table 1 and Sentence 9.7.1(1)(a)
- ULC-615(A) - 2002 and
- ULC-630(A) - 2001, referenced in Table 1 and Sentence 3.7.1(1)(b), and 9.7.2(2)(a) of the Code. Refer to ULC Standards Bulletin No. 2012-11 for further information.
May 2009 – ULC Updates

Underwriters Laboratories of Canada (ULC) has published the First Edition CAN/ULC-S660-08, Standard for Nonmetallic Underground Piping for Flammable and Combustible Liquids. This standard replaces, ULC/ORD-C971-2005, Nonmetallic Underground Piping for Flammable and Combustible Liquids, which had itself replaced the following ORDs referenced in Table 1 and Sentence 5.2.1(1) of the Code:

• ORD-C107.4-1992, “Ducted Flexible Underground Piping Systems”
• ORD-C107.7-1993, “Glass-Fibre Reinforced Plastic Pipe and Fittings”

Effective March 19, 2009, Underwriters Laboratories of Canada (ULC) have exited from the testing and certification of secondary containment liners, refer to ULC Certification Bulletin No. 2009-04 for further information.

Effective March 31, 2009, Underwriters Laboratories of Canada (ULC) have withdrawn ULC/ORD-C58.9-1997, Secondary Containment Liners for Underground and Aboveground Flammable and Combustible Liquid Tanks, referenced in Table 1 and Sentence 3.9.2(1) of the Code, refer to ULC Certification Bulletin No. 2009-04 for further information.

July 2005 – ULC Update

Effective July 1, 2005, the Underwriters’ Laboratories of Canada’s (ULC’s) Other Recognized Document (ORD), ULC/ORD-C971-2005, Nonmetallic Underground Piping for Flammable and Combustible Liquids, replaces the following ORDs referenced in Table 1 and Sentence 5.2.1(1) of the Code:

• ORD-C107.4-1992, “Ducted Flexible Underground Piping Systems”
• ORD-C107.7-1993, “Glass-Fibre Reinforced Plastic Pipe and Fittings”
Environmental Code of Practice
for Aboveground and Underground Storage Tank
Systems Containing Petroleum and
Allied Petroleum Products

PN 1326
The Canadian Council of Ministers of the Environment (CCME) is the major intergovernmental forum in Canada for discussion and joint action on environmental issues of national, international and global concern. The 14 member governments work as partners in developing nationally consistent environmental standards, practices, and legislation.

Canadian Council of Ministers of the Environment
123 Main, Suite 360
Winnipeg, Manitoba R3C 1A3
Ph: (204) 948-2090
Fax: (204) 948-2125

For additional copies, contact:

CCME Documents
Toll free: 1 (800) 805-3025
www.ccme.ca

Aussi disponible en français
La présente publication est également offerte en français sous le titre Code de recommandations techniques pour la protection de l’environnement applicable aux systèmes de stockage hors sol et souterrains de produits pétroliers et de produits apparentés. PN 1327

ISBN 1-896997-33-3

© Canadian Council of Ministers of the Environment, 2003
Abstract

The Canadian Council of Ministers of the Environment’s (CCME) “Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products” has been prepared for owners of storage tank systems, the petroleum marketing and distribution industry, and federal, provincial, and territorial departments which have the authority to regulate storage tanks containing petroleum or allied petroleum products.

The Code is a model set of technical requirements and only comes into effect if adopted, in whole or in part, by an authority having jurisdiction. It provides technical requirements for registration and approval of storage tank systems, design and installation of new storage tanks and piping, monitoring and leak detection, upgrading of existing systems, operation and maintenance, and the withdrawal from service of storage tank systems.

This publication updates, combines, and replaces CCME’s 1993 “Environmental Code of Practice for Underground Storage Tank Systems Containing Petroleum Products and Allied Petroleum Products” and the 1994 “Environmental Code of Practice for Aboveground Storage Tank Systems Containing Petroleum Products.” It reflects the advances in technology and the experience gained by industry and government regulators in proactively managing storage tanks systems in the intervening years.
Résumé

Le document du Conseil canadien des ministres de l’environnement (CCME) intitulé Code de recommandations techniques pour la protection de l’environnement applicable aux systèmes de stockage hors sol et souterrains de produits pétroliers et de produits apparentés a été préparé à l’intention des propriétaires de systèmes de stockage, de l’industrie de la commercialisation et de la distribution du pétrole ainsi que des ministères fédéraux, provinciaux et territoriaux qui ont le pouvoir de réglementer les systèmes de stockage contenant des produits pétroliers et des produits apparentés.

Le Code est un ensemble type d’exigences techniques; il n’entre en vigueur que s’il a été adopté, en tout ou en partie, par l’autorité compétente. Il formule des exigences techniques pour l’enregistrement et l’approbation des nouveaux systèmes de stockage; la conception et l’installation des nouveaux réservoirs de stockage et de la tuyauterie; la surveillance et la détection des fuites; l’amélioration des systèmes existants; l’exploitation et l’entretien; et la mise hors service des systèmes de stockage.

La présente publication met à jour, combine, et remplace le document du CCME de 1993 intitulé Code de recommandations techniques pour la protection de l’environnement applicable aux systèmes de stockage souterrains de produits pétroliers et de produits apparentés et le document de 1994 intitulé Code de recommandations techniques pour la protection de l’environnement applicable aux systèmes de stockage hors sol de produits pétroliers. Elle tient compte des progrès de la technologie et de l’expérience acquise par l’industrie et les organismes de réglementation gouvernementaux dans la gestion des systèmes de stockage depuis la parution des deux premiers codes.
Table of Contents

Abstract ... ii
Resume ... iii
List of Tables ... vi
Preface ... vii
National Task Force on Storage Tanks .. viii
Rationale for an Environmental Code of Practice .. ix
A Guide to the Use of this Code ... x

Part 1 Application and Definitions .. 1
Section 1.1 Application .. 1
Section 1.2 Equivalents .. 1
Section 1.3 Alternatives .. 1
Section 1.4 Definitions ... 1
Section 1.5 Reference Documents .. 5
Section 1.6 Abbreviations .. 9

Part 2 Registration and Approval of Storage Tank Systems .. 10
Section 2.1 Scope .. 10
Section 2.2 Registration of Existing Storage Tank Systems ... 10
Section 2.3 Approval to Construct Storage Tank Systems ... 10
Section 2.4 Registration of New Storage Tank Systems .. 10
Section 2.5 Product Supply and Registration .. 10

Part 3 Design and Installation of New Aboveground Storage Tanks 11
Section 3.1 Scope .. 11
Section 3.2 General Requirements .. 11
Section 3.3 Field-erected Storage Tank Systems .. 12
Section 3.4 Shop-fabricated Storage Tank Systems ... 12
Section 3.5 Aboveground Storage Tank Systems for Storing Used Oil .. 13
Section 3.6 Design Standards .. 13
Section 3.7 Repair, Alteration, Reconstruction, and Relocation .. 14
Section 3.8 Corrosion Protection of Aboveground Steel Storage Tank Systems 14
Section 3.9 Secondary Containment Requirements ... 14
Section 3.10 Spill Containment and Runoff Collection .. 15

Part 4 Design and Installation of New Underground Storage Tank Systems 17
Section 4.1 Scope .. 17
Section 4.2 General Requirements .. 17
Section 4.3 Design Standards ... 18
Section 4.4 Installation ... 19
Section 4.5 Corrosion Protection of Underground Steel Storage Tank Systems 19
Appendices

Appendix A Authorities Having Jurisdiction ... 41
Appendix B Explanatory Material .. 43
Appendix C Minimum Information Required for Registration of Storage Tank Systems 49
Appendix D Spill Reporting .. 50

List of Tables

Table 1 Reference Documents .. 6
Table 2 Leak Detection and Monitoring Methods ... 27
Table 3 New Underground Storage Tanks ... 28
Table 4 Aboveground Storage Tanks ... 28
Table 5 Underground Piping ... 28
Table 6 Aboveground Piping ... 29
Table 7 Turbine, Transition, and Dispenser Sumps .. 29
Table 8 Existing Single-Wall Underground Storage Tanks 29
Table 9 Existing Single-Wall Underground Piping .. 29
Table 10 Tank Components and Leak Detection Test Requirements 45
Preface

The “Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products” (hereafter referred to as “the Code”) is published by the Canadian Council of Ministers of the Environment (CCME) through its National Task Force on Storage Tanks.

The Code comprises a model set of technical requirements designed to protect the environment by preventing product releases from aboveground and underground storage tank systems. The Code was written in a form suitable for adoption by legislative authorities in Canada.

The membership of the National Task Force was representative of provincial, territorial, and federal agencies which have the authority to regulate storage tank systems containing petroleum and allied petroleum products. The Code was developed with the voluntary assistance of many industry experts who have contributed to the work of the National Task Force on Storage Tanks. The National Task Force was assisted in its work by the staff of the CCME Secretariat.

The National Task Force recommends that the Code be reviewed by CCME within five years of its publication.

Comments and inquiries on the use of the Code and suggestions for its improvement are welcomed and should be sent to:

CCME Secretariat
123 Main Street, Suite 360
Winnipeg, Manitoba
R3C 1A3
Tel: (204) 948-2090
Fax: (204) 948-2125
Email: info@ccme.ca

Acknowledgements
The National Task Force on Storage Tanks acknowledges the many individuals and organizations that have contributed to the production of this Code.
National Task Force on Storage Tanks

Bob Chandler, Alberta Environment (Co-Chair)
Maurice Mazerolle, Manitoba Conservation (Co-Chair)
Michael Gilbertson, Canadian Council of Ministers of the Environment
Don Edgecombe, Petroleum Tank Management Association of Alberta
Gordon Harper, Cantest Solutions, Inc.
Kelly Karr, Karr and Associates Ltd.
Bill Trussler, Shell Canada Ltd.
Duncan Ferguson, British Columbia Ministry of Water, Land & Air Protection
Anne MacKinnon, Environment Canada
Benoit Ouellette, New Brunswick Environment and Local Government
John Dutton, Newfoundland and Labrador Department of Environment
Charles Henderson, C-CORR Solutions
Gerard Chisholm, Nova Scotia Department of Environment and Labour
Ann-Marie Barker, Ontario Technical Standards and Safety Authority (Observer)
Michael Dodd, Canadian Standards Association
Elsón Fernandes, Elfent Ltd.
Jim Mackie, Fuel Safety Consultants Ltd.
Gordana Nikolic, Underwriters Laboratories of Canada
Philip Rizcallah, National Research Council of Canada
Danny MacInnis, Prince Edward Island Department of Fisheries, Aquaculture and Environment
Guy Robichaud, Québec Ministère des Ressources naturelles
Scott Robinson, Saskatchewan Environment
Folkie Johnson, Yukon Environment
Rationale for an Environmental Code of Practice

Historically, the National Fire Code of Canada (NFCC) and Canadian Standards Association (CSA) requirements have been used in Canada for the installation and operation of underground storage tanks containing petroleum products. These codes were written from the viewpoint of fire prevention and primarily cover the elements of fire prevention and fire safety. In the late 1980s, the Canadian Council of the Ministers of the Environment (CCME) saw a need to provide recommended practices that went beyond the scope of these documents and provided an environmental perspective on the management of storage tanks containing petroleum and allied petroleum products.

As a result, CCME’s “Environmental Code of Practice for Underground Storage Tank Systems Containing Petroleum Products and Allied Petroleum Products” was first published in 1988 and revised in 1993. This was followed in 1994 with the publication of the “Environmental Code of Practice for Aboveground Storage Tank Systems Containing Petroleum Products.”

Federal, provincial, and territorial jurisdictions agreed that the existing underground and aboveground codes of practice should be updated to keep pace with changes in the NFCC, reflect new CSA requirements, and take advantage of advances in technology. It was also decided to combine the existing aboveground and underground CCME codes into one comprehensive document.
A Guide to the Use of this Code

Purpose
This Code presents a model set of technical requirements to protect the environment from existing, new, or proposed storage tank systems that contain petroleum and allied petroleum products. Its primary purpose is the promotion of environmentally sound management of petroleum and allied petroleum product storage tank systems through the application of uniform performance standards throughout Canada.

Relation to federal, provincial, and territorial regulations
This Code is a model set of technical requirements and only comes into effect if adopted, in whole or in part, by an authority having jurisdiction. Where this Code has been adopted, in whole or in part, by an authority having jurisdiction, it shall be subject to any restrictions or conditions added by the regulatory authority. Readers of this Code are therefore advised to check with the federal, provincial, or territorial authority having jurisdiction to see whether this Code applies in their area of interest. (See Appendix A for contact information for federal, provincial, and territorial authorities having jurisdiction.)

Relation to other codes
This Code is written as a complementary document to the National Fire Code of Canada (NFCC) and to CAN/CSA B139, “Installation Code for Oil Burning Equipment”.

National Fire Code of Canada
This Code has been developed in conjunction with the National Research Council, publisher of the National Fire Code of Canada (NFCC), to minimize the possibility of conflict between the respective contents of the two codes.

While this Code provides minimum requirements for the prevention of petroleum and allied petroleum product losses from storage tank systems that may lead to environmental problems (primarily groundwater contamination), the NFCC sets technical requirements for the storage and handling of flammable and combustible liquids from the point of view of preventing fires or explosions.

In order to ensure effective application, fire officials, environmental officials, or other authorities having the jurisdiction to regulate petroleum and allied petroleum product storage tanks should be fully conversant with the technical requirements in both codes. This is the only way to ensure that storage tanks are built, installed, operated, and removed in a manner that is acceptable from both a fire safety and environmental point of view.

CSA Standard B139, Installation Code for Oil-Burning Equipment
This Code was developed in cooperation with the Canadian Standards Association, publishers of CAN/CSA B139. Storage tank systems that fall within the scope of CAN/CSA B139 are predominantly furnace oil tanks and storage tanks containing diesel fuel and connected to standby emergency power generators.

The CAN/CSA-B139 Code was revised and published in 2000. This Code provides additional requirements that address concerns, such as environmental sensitivity or upgrading of existing storage tank systems, which are beyond the scope of CAN/CSA-B139-00.

Regulatory authorities, owners, and installers of storage tanks should be fully conversant with the technical requirements of CAN/CSA-B139-00, this Code (where it is in force), and all federal/provincial/territorial regulations that apply.
Structure and Content

This Code is drafted in such a way that it may be adopted or enacted for legal use by any jurisdictional authority in Canada.

A decimal numbering system is used throughout this Code. The first number indicates the Part of the Code, the second the Section within the Part, the third the Article within the Section. An Article may be broken down further into Sentences, Clauses, and Subclauses, each of which is in brackets, as shown here:

4 Part
4.5 Section
4.5.1 Article
4.5.1 (1) Sentence
4.5.1 (1)(a) Clause
4.5.1 (1)(a)(i) Subclause

Sentence 3.2.8(1) is an example of a requirement in which all three clauses must be met to be in conformance with the Code.

3.2.8(1) No person shall install an aboveground storage tank system unless:
(a) required permits or approvals have been obtained from the authority having jurisdiction;
(b) plans, drawings and specifications of the system or equipment have been examined by the authority having jurisdiction; and
(c) the plans, drawings and specifications referred to in Clause (b) bear the stamp and signature of a professional engineer licensed to practice in the province/territory.

Sentence 5.4.2(1) is an example of a requirement in which only one of the clauses must be met to be in conformance with the Code.

5.4.2(1) Underground piping larger than 75 mm in diameter shall be designed, installed and maintained to meet the requirements of:
(a) secondary containment in conformance with Sentence 5.4.4(1);
(b) leak detection in conformance with Part 6; or

The following is a summary of the contents of this Code.

Part 1 Application and Definitions
Part 1 defines terms and stipulates to what the Code applies. It includes the necessary administrative details to ensure that the technical requirements can be applied with a minimum of difficulty.

Part 2 Registration and Approval of Storage Tank Systems
Part 2 contains the requirements for the registration and approval of storage tank systems. It includes the scope of the tank systems that are required to be registered as well as provisions regarding storage tank system identification.

Part 3 Design and Installation of New Aboveground Storage Tank Systems
The design and installation of new aboveground storage tank systems is covered in Part 3. The recommendations are intended to ensure that equipment is designed and installed properly in order to minimize the possibility of leaks and spills.
Part 4 Design and Installation of New Underground Storage Tank Systems
The design and installation of new underground storage tank systems are covered in Part 4. The recommendations are intended to ensure that equipment is designed and installed properly in order to minimize the possibility of leaks and spills.

Part 5 Design and Installation of New Piping Systems
Part 5 outlines the requirements for new piping systems for storage tank systems. It includes recommendations for product transfer, design standards, and installation.

Part 6 Monitoring and Leak Detection of Storage Tank Systems
The frequency and method of monitoring and leak detection for all new and existing storage tank systems are specified in Part 6. The recommendations are intended to prevent or minimize the environmental impact of spills or leaks.

Part 7 Upgrading of Existing Storage Tank Systems
Part 7 specifies how and when existing storage tank systems must be upgraded to be in conformance with this Code. It also defines those storage tank systems that are exempt from the upgrading requirement.

Part 8 Operation and Maintenance
Part 8 addresses the ongoing operation and maintenance of storage tank systems. The intention is to prevent product releases. When they do occur, however, the recommendations in this Part are designed to help operators of storage tank systems detect, terminate, and mitigate releases as quickly as possible.

Part 9 Withdrawal From Service of Underground Storage Tank Systems
Part 9 contains the requirements for the closure and withdrawal from service of storage tank systems, either temporarily or permanently. Provisions for tank removal and disposal are provided to ensure that abandoned storage tanks do not cause environmental problems.

Appendix A Authorities Having Jurisdiction
This Appendix lists the contact information for the various federal, provincial, and territorial authorities having jurisdiction.

Appendix B Explanatory Material
Appendix B contains explanations to assist the user in understanding these Code requirements. The numbering system used in the Appendix corresponds with the appropriate Article in this Code.

Appendix C Minimum Information Required for Registration of Storage Tank Systems
This appendix outlines the minimum information required by authorities having jurisdiction for the registration of storage tank systems.

Appendix D Spill Reporting
This Appendix lists the federal, provincial, and territorial environmental emergency reporting telephone numbers.
Part 1 Application and Definitions

Section 1.1 Application

1.1.1(1) Unless otherwise permitted by the authority having jurisdiction, the owner of a storage tank system shall comply with the provisions of this Code.

1.1.1(2) When additional environmental, public health, or safety concerns have been identified, the authority having jurisdiction may require measures above and beyond the provisions of this Code.

1.1.2 Except as provided in Article 1.1.3(1), this Code applies to aboveground and underground storage tank systems used for the storage of petroleum and allied petroleum products.

1.1.3(1) This Code does not apply to:
(a) a storage tank system containing raw production petroleum and allied petroleum products;
(b) a storage tank system located within the fence line of a refinery or in an area contiguous with the refinery process units;
(c) an aboveground storage tank system having a capacity of 2 500 L or less that is connected to a heating appliance or emergency generator; or
(d) a mobile tank.

1.1.4 Notwithstanding the requirements of Parts 7 and 8, an owner or operator shall not directly or indirectly cause or allow a leak or spill of petroleum or allied petroleum products from a storage tank system or vehicle.

Section 1.2 Equivalents

1.2.1 The provisions of this Code are not intended to limit the appropriate use of materials, systems, or equipment not specifically described herein.

1.2.2 Materials, systems, equipment, and procedures not specifically described herein, or that vary from the specific requirements in this Code, or for which no recognized test procedure has been established, may be used if it can be shown to the authority having jurisdiction that these alternatives are equivalent to those specifically described herein and will perform in an equivalent manner acceptable to the authority having jurisdiction.

Section 1.3 Alternatives

1.3.1 Alternatives to the materials, systems, equipment, and procedures or standards specified in this Code may be used if the authority having jurisdiction is satisfied that those alternatives provide a level of performance, public health, safety, or environmental protection that is equivalent to or exceeds the levels of performance or protection provided by this Code.

Section 1.4 Definitions

1.4.1 Words and phrases that are not included in the list of defined terms in this Part shall have the meanings that are commonly assigned to them in the context in which they are used in this Code, taking into account the specialized use of terms by various trades and professions to which the terminology applies.

1.4.2 The words and terms that are in italics in this Code shall have the following meanings unless otherwise indicated by the context:

Abandoned or abandonment means a storage tank system that has been out-of-service for more than one year.

Aboveground storage tank means a storage tank with all the storage tank volume above grade.
Aboveground storage tank system means one or more commonly connected aboveground storage tanks including all connected piping, both aboveground and underground, pumps, dispensing, and product transfer apparatus, dyking, overfill protection devices, and associated spill containment and collection apparatus.

Allied petroleum product means a mixture of hydrocarbons other than a petroleum product that may be water miscible and may have a density greater than water, and includes the following (See Appendix B, note B.1.4.2 Allied Petroleum Product):

(a) Thinners and solvents used by the paint and varnish industry specified under the Canadian General Standards Board (CGSB):

CAN/CGSB-1.124-99 Thinner for Vinyl Coatings
CAN/CGSB-1.136-92 Antiblush Thinner for Cellulose Nitrate Lacquer
CAN/CGSB-1.2-89 Boiled Linseed Oil
CAN/CGSB-1.4-2000 Petroleum Spirits Thinner
CAN/CGSB-1.70-99 High Solvency Thinner
CAN/CGSB-1.94-M89 Xylene Thinner (Xylol)
CAN/CGSB-1.110-M91 General Purpose Thinners for Lacquers
CAN/CGSB-1.164-92 Solvent for Vinyl Pretreatment Coating

(b) Solvents and chemicals used by chemical and manufacturing industry specified under CGSB (15), and benzene and toluene:

CAN/CGSB-15.50-92 Technical Grade Acetone
CAN/CGSB-15.52-92 Methyl Ethyl Ketone, Technical Grade

(c) Inks used by printing industry specified under CGSB (21):

CAN/CGSB-21.1-93 Offset Lithographic Printing Ink

(d) Products specified under CGSB (3):

- 3-GP-525Ma: Isopropanol
- 3-GP-531M: Methanol, Technical Grade
- 3-GP-855M: Ethylene Glycol, Uninhibited

Alter or alteration means to enlarge, reduce, refurbish, upgrade, or remove a storage tank system.

Approved means, when used in reference to a storage tank, component, or accessory, that the product has been investigated by a testing agency, accredited by the Standards Council of Canada, or is acceptable to the authority having jurisdiction and has been found to comply with specific requirements and is identified with an authorized marking of the testing agency, as appropriate.

Authority having jurisdiction means the federal, provincial, or territorial officer(s) with the legal authority to regulate storage tank systems in the area of interest. (See Appendix A.)

Cathodic protection or cathodically protected means a method of reducing or preventing corrosion of a metal surface by making that surface the cathode of an electrochemical cell.

Combustible liquid or product means any liquid having a closed cup flash point at or above 37.8 °C and below 93.3 °C.

Contingency plan means planned procedures for reporting, containing, removing, and cleaning up a spill or leak.

Construction means erection or installation.

Containment sump means a dispenser, pump, transition, or turbine sump.

Corrosion means the deterioration of a metal resulting from a reaction with its environment.

Corrosion expert means a person recognized by NACE International (formerly the National Association of Corrosion Engineers) as a corrosion specialist, cathodic protection specialist, or a registered professional engineer experienced in corrosion protection.
Corrosion protection means a method of reducing or preventing corrosion of a storage tank system through cathodic protection, the application of protective coatings, or the use of a non-corroding material in its construction.

Day means any continuous 24 hour period.

Discharge means releasing, spilling, leaking, pumping, pouring, emitting, emptying, or dumping of petroleum or allied petroleum products into the environment, whether intentional or unintentional.

Dispenser sump means a container located underneath or near a dispenser or self-contained suction pump that collects or contains leaks.

Effective date means the date this Code is adopted by an authority having jurisdiction or a date specified by an authority having jurisdiction.

Empty means to remove the contents of a storage tank system as far as is practicable by such means as draining, suction, pouring, or pumping.

Existing means that which was in place or commenced operation on or before the effective date of this Code.

Flammable liquid or product means any liquid having a closed cup flash point below 37.8 °C and a vapour pressure not exceeding 275.8 kPa (absolute) at 37.8 °C.

Flash point means the minimum temperature at which a liquid within a container gives off vapour in sufficient concentration to form an ignitable mixture with air near the surface of the liquid.

Free oil means the non-soluble, non-emulsified petroleum and allied petroleum product layer that accumulates in an oil-water separator.

Fuel oil means kerosine or any hydrocarbon oil as classified in CAN/CGSB-3.2-99, “Fuel Oil, Heating” and CAN/CGSB-3.3-99, “Kerosine”.

Handling means the storing, transmitting, transporting, or distributing of petroleum or allied petroleum products and includes putting petroleum products into a container or into the fuel tank of a motor vehicle, vessel, or aircraft.

Impermeable barrier means a secondary storage tank wall, synthetic membrane liner, or other equivalent material in conformance with this Code.

Internal coating means a coating or lining of a non-corrodible material bonded firmly to the interior surface of a storage tank that does not chemically or physically degrade when in contact with the petroleum or allied petroleum products stored therein.

Interstitial space means the space between the primary storage tank or piping wall and the impermeable barrier within a secondary containment system. (See Appendix B, note B.1.4.2 Interstitial space)

Leak means any loss of liquid petroleum or allied petroleum products because of a defect in a storage tank system.

Leak detection means a device or method that is capable of detecting leaks in a storage tank system.

Liner means a material used as the outer barrier of a secondary containment system, but does not include the outer wall of double-wall piping or storage tanks.

Line-leak detector means a device used in pressure piping systems to detect a leak in the piping.

Mobile tank means a mobile refueling tank as described by ORD-C142.13-1977, Mobile Refueling Tanks.

Motive fuel means any fuel used to power a vehicle, aircraft, or vessel.

Oil-water separator means a device for collecting and separating non-soluble, non-emulsified petroleum and allied petroleum products from water.

Operator means the person who is responsible for the day-to-day operation of an installation where an aboveground or underground storage tank is located or, when referring to a vehicle, the driver in charge of the vehicle.
Out-of-service means that a storage tank system or portion thereof is no longer serving its intended use.

Overfill protection device means a mechanical device, electrical device, or fill procedure system that is intended to prevent a storage tank from being overfilled.

Owner means the Crown, an institution, corporate entity, Indian band, government department or agency, or a person who has legal ownership of the storage tank system or who has been assigned custody to control, care for, manage, or dispose of the storage tank system.

Petroleum product means a single product or mixture of at least 70% hydrocarbons, by volume, refined from crude oil, with or without additives, that is used, or could be used, as a fuel, lubricant, or power transmitter and without restricting the foregoing, such products include gasoline, diesel fuel, aviation fuel, kerosine, naphtha, lubricating oil, fuel oil, engine oil and used oil, and exclude propane, paint, and solvents.

Piping means fuel conduits, including fittings and valves that are necessary for the safe handling and storage of petroleum products and allied petroleum products and are specified by a nominal inside diameter.

Precision leak detection test means a test capable of detecting a storage tank leak as small as 0.38 L/h with a probability of detection of 0.95 or greater and a probability of false alarm of 0.05 or less, within a period of 24 hours, accounting for variables such as vapour pockets, thermal expansion of product, temperature stratification, groundwater level, evaporation, pressure and end deflection.

Pressure liquid media leak detection test means a test utilizing a device to pressurize piping with a suitable test liquid to determine the presence of leaks.

Product transfer area means the area around the connection point between a delivery truck, railcar, or vessel and a storage tank system with a capacity of 2,500 L or more.

Protected means having impact, projectile, and fire resistance qualities for an aboveground storage tank system.

Protective coating means a coating applied to a surface to protect the substrate from corrosion.

Secondary containment means an impermeable barrier that prevents leaks from the primary storage tank system from reaching outside the containment area.

Separated solid means the particulate material that settles at the bottom of an oil-water separator.

Site means a lot or property where there is one or more underground storage tank systems within 100 m of each other, or one or more aboveground storage tank systems within 200 m of each other, and all storage tanks on the property are owned by the same owner(s).

Sludge means the petroleum or allied petroleum product residue or material that accumulates at the bottom of a storage tank.

Spill containment device means a container fitted to the inlet of a storage tank or to the suction coupling of a used oil storage tank that helps prevent spills from entering the environment.

Static liquid media leak detection test means a leak detection test in which a suitable test liquid is placed into the containment device and is monitored for a change in the liquid level and the rate of change.

Storage tank means a closed container for the storage of petroleum or allied petroleum products with a capacity of more than 230 L that is designed to be installed in a fixed location.

Storage tank system means a system for the storage and dispensing of petroleum or allied petroleum product and is not limited to storage tanks, associated piping, vents, pumps, and dispensing equipment.
Tank bottom water means water that accumulates at the bottom of a storage tank.

Underground storage tank means a storage tank with all of the storage tank volume below grade and the primary tank or double-wall completely surrounded by or in intimate contact with backfill.

Underground storage tank system means one or more commonly connected underground storage tank(s), including all underground and aboveground connections, piping, pumps, and dispensers.

Used oil means oil from industrial and non-industrial sources that has been acquired for lubricating or other purposes and has become unsuitable for its original purpose due to the presence of impurities or the loss of original properties. Used oil does not include oils derived from animal or vegetable fats, crude oil or recovered fuel oils spilled onto land or water and wastes from petroleum-refining operations. The following categories of used oil are covered by this Code (See Appendix B, note B.1.4.2 Used Oil):

a) lubricating oils (engine, turbine, or gear);

b) hydraulic fluids (including transmission fluids);

and

c) insulating oils.

Vent means an opening in a storage tank system that is specifically designed to relieve excess internal pressure or vacuum within a storage tank system.

Section 1.5 Reference Documents

1.5.1 Where there is a conflict between the provisions of this Code and those of a reference document, the provisions of this Code shall apply.

1.5.2 Unless otherwise specified herein, the documents listed in Table 1 shall include the latest editions, amendments, revisions, and supplements effective to December 31, 2002.
Table 1 - Reference Documents

<table>
<thead>
<tr>
<th>Issuing Agency – American Petroleum Institute</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number</td>
<td>Title of Document</td>
</tr>
<tr>
<td>API Spec 12B-95</td>
<td>Bolted Tanks for Storage of Production Liquids</td>
</tr>
<tr>
<td>API Spec 12D-94</td>
<td>Field Welded Tanks for Storage of Production Liquids</td>
</tr>
<tr>
<td>API Spec 12F-94</td>
<td>Shop Welded Tanks for Storage of Production Liquids</td>
</tr>
<tr>
<td>API 570-98</td>
<td>Piping Inspection Code: Inspection, Repair, Alteration, and Rerating of In-Service Piping Systems</td>
</tr>
<tr>
<td>API Std 650-98</td>
<td>Welded Steel Tanks for Oil Storage</td>
</tr>
<tr>
<td>API RP 651-97</td>
<td>Cathodic Protection of Aboveground Petroleum Storage Tanks</td>
</tr>
<tr>
<td>API RP 652-97</td>
<td>Lining of Aboveground Petroleum Storage Tank Bottoms</td>
</tr>
<tr>
<td>API Std 653-01</td>
<td>Tank Inspection, Repair, Alteration, and Reconstruction</td>
</tr>
<tr>
<td>API RP 1632-96</td>
<td>Cathodic Protection of Underground Storage Tank and Piping Systems</td>
</tr>
<tr>
<td>API RP 2350-96</td>
<td>Overfill Protection for Storage Tanks in Petroleum Facilities</td>
</tr>
<tr>
<td>API Std 2610-94</td>
<td>Design, Construction, Operation, Maintenance and Inspection of Terminal and Tank Facilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issuing Agency – Canadian Council of Ministers of the Environment</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number</td>
<td>Title of Document</td>
</tr>
<tr>
<td>CCME PN 1299</td>
<td>Canadian Environmental Quality Guidelines (1999)</td>
</tr>
<tr>
<td>CCME CWS for PHC</td>
<td>Canada-wide Standards for Petroleum Hydrocarbons in Soil (2001)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issuing Agency – Canadian General Standards Board</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number</td>
<td>Title of Document</td>
</tr>
<tr>
<td>CAN/CGSB-1.124-99</td>
<td>Thinner for Vinyl Coatings</td>
</tr>
<tr>
<td>CAN/CGSB-1.136-92</td>
<td>Antiblush Thinner for Cellulose Nitrate Lacquer</td>
</tr>
<tr>
<td>3-GP-525M</td>
<td>Isopropanol</td>
</tr>
<tr>
<td>3-GP-531M</td>
<td>Methanol, Technical</td>
</tr>
<tr>
<td>3-GP-855M</td>
<td>Ethylene Glycol, Uninhibited</td>
</tr>
<tr>
<td>CAN/CGSB-15.50-92</td>
<td>Technical Grade Acetone</td>
</tr>
<tr>
<td>CAN/CGSB-15.52-92</td>
<td>Methyl Ethyl Ketone, Technical Grade</td>
</tr>
<tr>
<td>CAN/CGSB-21.1-93</td>
<td>Offset Lithographic Printing Ink</td>
</tr>
<tr>
<td>CAN/CGSB-1.2-89</td>
<td>Boiled Linseed Oil</td>
</tr>
<tr>
<td>CAN/CGSB-1.4-2000</td>
<td>Petroleum Spirits Thinner</td>
</tr>
<tr>
<td>CAN/CGSB-1.70-99</td>
<td>High Solvency Thinner</td>
</tr>
<tr>
<td>CAN/CGSB-1.94-M89</td>
<td>Xylene Thinner (Xylol)</td>
</tr>
<tr>
<td>CAN/CGSB-1.110-M91</td>
<td>General Purpose Thinners for Lacquers</td>
</tr>
<tr>
<td>CAN/CGSB-1.164-92</td>
<td>Solvent for Vinyl Pretreatment Coating</td>
</tr>
<tr>
<td>CAN/CGSB-3.2-99</td>
<td>Fuel Oil, Heating</td>
</tr>
<tr>
<td>CAN/CGSB-3.3-99</td>
<td>Kerosine</td>
</tr>
</tbody>
</table>
Issuing Agency – Canadian Petroleum Products Institute

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPPI/PACE Report 87-1</td>
<td>Impressed Current Method of Cathodic Protection of Underground Petroleum Storage Tanks</td>
</tr>
<tr>
<td>CPPI</td>
<td>Code of Practice for Management of Water Effluent Quality at Petroleum Storage and Distribution Facilities</td>
</tr>
</tbody>
</table>

Issuing Agency – Canadian Standards Association

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CSA-B139-00</td>
<td>Installation Code for Oil Burning Equipment</td>
</tr>
<tr>
<td>CAN/CSA-Z245.1-98</td>
<td>Steel Line Pipe</td>
</tr>
</tbody>
</table>

Issuing Agency – Environmental Protection Agency

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA/530/UST-90/007</td>
<td>Standard Test Procedures for Evaluating Leak Detection Methods: Statistical Inventory Reconciliation Methods</td>
</tr>
<tr>
<td>EPA 510-B-95-009</td>
<td>Introduction to Statistical Inventory Reconciliation</td>
</tr>
</tbody>
</table>

Issuing Agency – NACE International

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACE RP0169-2002</td>
<td>Control of External Corrosion on Underground or Submerged Metallic Piping Systems</td>
</tr>
<tr>
<td>NACE RP0193-2001</td>
<td>External Cathodic Protection of On-Grade Carbon Steel Storage Tank Bottoms</td>
</tr>
<tr>
<td>NACE TM0101-2001</td>
<td>Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Tank Systems</td>
</tr>
<tr>
<td>NACE No. 10/SSPC-PA6</td>
<td>Fiberglass-Reinforced Plastic (FRP) Linings Applied to Bottoms of Carbon Steel Aboveground Storage Tanks</td>
</tr>
</tbody>
</table>

Issuing Agency – National Research Council

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRCC 38727</td>
<td>National Fire Code of Canada (NFCC) - 1995</td>
</tr>
</tbody>
</table>

Issuing Agency – Steel Tank Institute

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>STI SP001-00</td>
<td>Standard for Inspection of In-service Shop Fabricated Aboveground Tanks for the Storage of Flammable and Combustible Liquids.</td>
</tr>
<tr>
<td>STI R831-98</td>
<td>Optional Recommended Practice for Control of Localized Corrosion Within Underground Steel Petroleum Storage Tanks.</td>
</tr>
<tr>
<td>STI R893-89</td>
<td>Recommended Practice for External Corrosion Protection of Shop Fabricated Aboveground Tank Floors.</td>
</tr>
<tr>
<td>STI RP011-01</td>
<td>Recommended Practice for Anchoring of Steel Underground Storage Tanks.</td>
</tr>
<tr>
<td>Document Number</td>
<td>Title of Document</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>ULC-S601-2000</td>
<td>Aboveground Horizontal Shop Fabricated Steel Tanks</td>
</tr>
<tr>
<td>ULC-S601(A)-2001</td>
<td>Shop Refurbishing of Aboveground Horizontal Shop Fabricated Steel Tanks</td>
</tr>
<tr>
<td>CAN/ULC-S602-1992</td>
<td>Aboveground Steel Tanks for Fuel Oil and Lubricating Oil</td>
</tr>
<tr>
<td>CAN/ULC-S603-1992</td>
<td>Underground Steel Tanks</td>
</tr>
<tr>
<td>CAN/ULC-S603.1-1992</td>
<td>Galvanic Corrosion Protection Systems for Underground Steel Tanks</td>
</tr>
<tr>
<td>ULC-S603(A)-2001</td>
<td>Refurbishing of Underground Steel Tanks</td>
</tr>
<tr>
<td>ULC-S615-1998</td>
<td>Underground Reinforced Plastic Tanks</td>
</tr>
<tr>
<td>ULC-S615(A)-1987</td>
<td>Refurbishing of Underground Reinforced Plastic Tanks</td>
</tr>
<tr>
<td>ULC-S618-2000</td>
<td>Magnesium and Zinc Anodes and Zinc and Copper/Copper Sulphate Reference Electrodes</td>
</tr>
<tr>
<td>ULC-S630-2000</td>
<td>Aboveground Vertical Shop Fabricated Steel Tanks</td>
</tr>
<tr>
<td>ULC-S630(A)-2001</td>
<td>Shop refurbishing of Aboveground Vertical Shop Fabricated Steel Tanks</td>
</tr>
<tr>
<td>CAN/ULC-S643-1999</td>
<td>Flexible Underground Hose Connectors</td>
</tr>
<tr>
<td>CAN/ULC-S643-2000</td>
<td>Aboveground Shop Fabricated Steel Utility Tanks</td>
</tr>
<tr>
<td>CAN/ULC-S651-2000</td>
<td>Emergency Valves</td>
</tr>
<tr>
<td>ULC-S652-1993</td>
<td>Tank Assemblies for Collection of Used Oil</td>
</tr>
<tr>
<td>ULC-S653-1994</td>
<td>Contained Aboveground Steel Tank Assemblies</td>
</tr>
<tr>
<td>ULC-S655-1998</td>
<td>Aboveground Protected Tank Assemblies</td>
</tr>
<tr>
<td>ULC-S656-2000</td>
<td>Oil-Water Separators</td>
</tr>
<tr>
<td>ORD-C58.9-1997</td>
<td>Secondary Containment Liners for Underground and Aboveground Tanks</td>
</tr>
<tr>
<td>ORD-C58.10-1992</td>
<td>Underground Jacketed Steel Tanks</td>
</tr>
<tr>
<td>ORD-C58.12-1992</td>
<td>Leak Detection Devices (Volumetric Type) for Underground Storage Tanks</td>
</tr>
<tr>
<td>ORD-C58.14-1992</td>
<td>Leak Detection Devices (Nonvolumetric Type) for Underground Storage Tanks</td>
</tr>
<tr>
<td>ORD-C58.15-1992</td>
<td>Overfill Protection Devices for Flammable Liquid Storage Tanks</td>
</tr>
<tr>
<td>ORD-C58.19-1992</td>
<td>Spill Containment Devices for Underground Tanks</td>
</tr>
<tr>
<td>ORD-C58.20-1996</td>
<td>Special Corrosion Protection Underground Tanks</td>
</tr>
<tr>
<td>ORD-C80.1-2000</td>
<td>Aboveground Non-Metallic Tanks for Fuel Oil</td>
</tr>
<tr>
<td>ORD-C107.4-1992</td>
<td>Ducted Flexible Underground Piping Systems</td>
</tr>
<tr>
<td>ORD-C107.7-1993</td>
<td>Glass-Fibre Reinforced Plastic Pipe and Fittings</td>
</tr>
<tr>
<td>ORD-C107.12-1992</td>
<td>Line Leak Detection Devices for Flammable Liquid Piping</td>
</tr>
<tr>
<td>ORD-C107.21-1992</td>
<td>Under-Dispenser Sumps</td>
</tr>
<tr>
<td>ORD-C142.5-1992</td>
<td>Aboveground Concrete Encased Steel Tank Assemblies</td>
</tr>
<tr>
<td>ORD-C142.6-2000</td>
<td>Storage Vaults</td>
</tr>
<tr>
<td>ORD-C142.13-1997</td>
<td>Mobile Refueling Tanks</td>
</tr>
<tr>
<td>ORD-C142.15-2000</td>
<td>Precast Concrete Tanks</td>
</tr>
<tr>
<td>ORD-C142.17-1998</td>
<td>Aboveground Special Purpose Relocatable Vertical Tanks</td>
</tr>
<tr>
<td>ORD-C142.18-1995</td>
<td>Aboveground Rectangular Steel Tanks</td>
</tr>
<tr>
<td>ORD-C142.19-1994</td>
<td>Spill Containment Devices for Aboveground Tanks</td>
</tr>
<tr>
<td>ORD-C142.20-1995</td>
<td>Aboveground Secondary Containment Tanks</td>
</tr>
<tr>
<td>ORD-C142.21-1995</td>
<td>Aboveground Used Oil Systems</td>
</tr>
<tr>
<td>ORD-C142.22-1995</td>
<td>Contained Aboveground Vertical Steel Tank Assemblies</td>
</tr>
<tr>
<td>ORD-C142.23-1991</td>
<td>Aboveground Waste Oil Tanks</td>
</tr>
<tr>
<td>ORD-C536-1998</td>
<td>Flexible Metallic Hose</td>
</tr>
</tbody>
</table>

Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products 8
Section 1.6 Abbreviations

1.6.1 The abbreviations used in this Code for the names of associations or other codes shall have the meanings assigned to them in this Article. The addresses of the associations or code-sponsoring organizations are provided as follows:

API American Petroleum Institute
1220 L Street N.W.
Washington, D.C. 20005
Phone: 202-682-8375 FAX: 202-962-4776
E-mail: publications@api.org
Web Page: www.pei.org

CAN National Standards of Canada
1200-45 O’Connor Street
Ottawa, Ontario K1P 6N7
Phone: 613-238-3222 FAX: 613-995-4564
E-mail: info@scc.ca
Web Page: www.scc.ca

CCME Canadian Council of Ministers of the Environment
123 Main Street,
Winnipeg, Manitoba R3C 1A3
Phone: 204-948-2090 FAX: 204-948-2125
Web Page: www.ccme.ca

CGSB Canadian General Standards Board
1402 - 222 Queen Street
Ottawa, Ontario K1A 1G6
Phone: 819-956-0425 FAX: 819-956-5644
E-mail: CGSB@Piper.PWGSC.gc.ca
Web Page: www.pwgsc.gc.ca/cgsb

CPCA Canadian Petroleum Contractors Association
PO Box 415 Markham, Ontario, L3P 3J8
Tel: 705 735-9437 Fax 705 735-9418
Web Page: www.CPCAnline.com

CPPI Canadian Petroleum Products Institute
1000 - 275 Slater Street
Ottawa, Ontario K1P 5H9
Phone: 613-232-3709 FAX: 613-236-4280

CSA Canadian Standards Association
178 Rexdale Blvd.
Toronto, Ontario M9W 1R3
Phone: 416-747-4000 FAX: 416-747-4149
E-mail: sales@csa.ca
Web Page: www.csa.ca

EPA U.S. Environmental Protection Agency,
Office of Underground Storage Tanks
401 M Street S. W., Mail Code 5401G
Washington, D.C., U.S.A. 20460
Phone: 703-603-9900 FAX: 703-603-9163
Web Page: www.epa.gov/swerust1/index.htm

NACE NACE International (formerly National Association of Corrosion Engineers)
1440 South Creek Drive
Houston, Texas, USA 77084-4906
Phone: 281-228-6200 FAX: 281-228-6329
Web Page: www.nace.org

NFCC National Fire Code of Canada,
published under the auspices of the National Research Council of Canada
National Research Council of Canada
Ottawa, Ontario K1A 0R6
Phone: 613-993-2463 FAX: 613-952-7673
E-mail: Irc.Client-Services@nrc.ca
Web Page: www.nrc.ca/irc/

STI Steel Tank Institute
570 Oakwood Road
Lake Zurich, Illinois 60047
Phone 847-438-8265 FAX 847-438-8766
E-mail: wgeyer@steeltank.com
Web Page: www.steeltank.com

ULC Underwriters’ Laboratories of Canada
7 Crouse Road
Scarborough, Ontario M1R 3A9
Phone: 416-757-3611 FAX: 416-757-9540
E-mail: ulcinfo@ulc.ca
Web Page: www.ulc.ca/

1.6.2 Abbreviations of words and phrases in this Code shall have the following meanings:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>centimetre(s)</td>
</tr>
<tr>
<td>°C</td>
<td>degree(s) Celsius</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal(s)</td>
</tr>
<tr>
<td>L</td>
<td>litre(s)</td>
</tr>
<tr>
<td>m</td>
<td>metre(s)</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>millilitres</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre(s)</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt(s)</td>
</tr>
<tr>
<td>s</td>
<td>second(s)</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre(s) or micron(s)</td>
</tr>
</tbody>
</table>
Part 2 Registration and Approval of Storage Tank Systems

SECTION 2.1 Scope
2.1.1 This Part applies to the registration and approval to construct a storage tank system.

SECTION 2.2 Registration of Existing Storage Tank Systems
2.2.1 The owner of an existing storage tank system shall register all storage tanks of the system with the authority having jurisdiction in a manner and timeframe prescribed by the authority having jurisdiction.

2.2.2 Registration of an existing storage tank system shall be conducted by completing and filing a registration form in a manner specified by the authority having jurisdiction. (See Appendix C)

2.2.3 The owner of an existing storage tank system shall identify registered tanks in a manner and time frame specified by the authority having jurisdiction.

2.2.4 The authority having jurisdiction may deem the age of an existing storage tank system to be unknown unless the owner provides the authority having jurisdiction with either the date of installation and/or the date of manufacture.

SECTION 2.3 Approval of Storage Tank Systems
2.3.1 No person shall construct or cause to construct, install, alter, or operate a storage tank system unless all required permits and approvals have been obtained from the authority having jurisdiction.

SECTION 2.4 Registration of New Storage Tank Systems
2.4.1 The owner of a new storage tank system installed after a date specified by the authority having jurisdiction shall register the storage tank system.

2.4.2 The new storage tank system shall be registered by completing and filing a registration form as specified by the authority having jurisdiction. (See Appendix C)

2.4.3 The owner of a new storage tank system shall identify registered tanks in a manner specified by the authority having jurisdiction.

SECTION 2.5 Product Supply and Registration
2.5.1 After a date specified by the authority having jurisdiction, no person shall transfer or cause to be transferred petroleum or allied petroleum products to a storage tank system unless the storage tank system has been registered with the authority having jurisdiction.
Section 3.1 Scope

3.1.1(1) This Part applies to the design and installation of a new aboveground storage tank system.

3.1.1(2) A storage tank installed in a concrete vault located below grade with the interior of the vault not filled with backfill material shall be considered an aboveground storage tank for the purpose of this Code.

Section 3.2 General Requirements

3.2.1 Except as provided in this Part, the design, fabrication and installation of an aboveground storage tank system shall be in conformance with the NFCC.

3.2.2 Except as provided in this Part, the design and installation of an aboveground storage tank system connected to an oil-burning appliance and equipment that comes within the scope of CAN/CSA-B139-00, “Installation Code for Oil Burning Equipment” shall be in conformance with that Code.

3.2.3 An aboveground storage tank, components, and accessories, for which there is a recognized standard, shall be approved only for the uses indicated under the standard.

3.2.4 A company or individual that is authorized by the authority having jurisdiction shall verify that the design and installation of an aboveground storage tank system meets the requirements of this Code or other requirements as specified by the authority having jurisdiction.

3.2.5 An aboveground storage tank system shall be installed by a company or individual that is authorized by the authority having jurisdiction.

3.2.6 An aboveground storage tank shall be equipped to control emissions of volatile organic compounds in conformance with CCME PN 1180, “Environmental Guideline for Controlling Emissions of Volatile Organic Compounds from Aboveground Storage Tanks”. (See Appendix B, note B.3.2.6)

3.2.7(1) The owner of an aboveground storage tank system shall provide an as-built drawing to the authority having jurisdiction in the manner and time frame as specified by the authority having jurisdiction.

3.2.7(2) As-built drawings for an aboveground storage tank system shall include, as a minimum:
 (a) the outline of all storage tanks;
 (b) the centerline of all piping or piping groups;
 (c) the centerline of all underground electrical power and monitor sensor conduit;
 (d) building foundation outlines;
 (e) secondary containment systems; and
 (f) property lines.

3.2.8(1) No person shall install an aboveground storage tank system unless:
 (a) required permits or approvals have been obtained from the authority having jurisdiction;
 (b) plans, drawings and specifications of the system or equipment have been examined by the authority having jurisdiction; and
 (c) the plans, drawings and specifications referred to in Clause (b) bear the stamp and signature of a professional engineer licensed to practice in the province/territory.

3.2.9 An aboveground storage tank system shall be designed and installed in accordance with the manufacturer’s instructions, the appropriate standards, and this Code.
Section 3.3 Field-erected Storage Tank Systems

3.3.1(1) A field-erected storage tank system shall:
 (a) have corrosion protection in conformance with Section 3.8;
 (b) have a secondary containment system in conformance with Section 3.9;
 (c) have leak detection in conformance with Part 6;
 (d) have containment sumps, as applicable;
 (e) except as specified in Sentence 3.4.1(2), be provided with overfill protection:
 (i) compatible with the intended method of filling;
 (ii) designed, built, and approved in conformance with ORD-C58.15-1992, “Overfill Protection Devices for Flammable Liquid Storage Tanks,” which will prevent filling the tank beyond 95% of the tank’s capacity or activate an audible or combined audible/visual alarm at a product level of 90% of the tank’s capacity; and
 (iii) where a high-level alarm system is used, with audible and visual alarms located where personnel are constantly on duty during the product transfer operation and can promptly stop or divert delivery to the tank; and
 (f) have piping in conformance with Part 5, as applicable.

3.3.1(2) A shop-fabricated storage tank system having a capacity of less than 5,000 L may be provided with overfill protection in the form of visual monitoring and gauging of the level in the storage tank system by trained employees in constant attendance throughout the transfer operation and who are located so as to be able to promptly shut down the flow, or communicate immediately with the person controlling the delivery so that the flow can be shut down promptly.

Section 3.4 Shop-fabricated Storage Tank Systems

3.4.1(1) A shop-fabricated storage tank system shall:
 (a) have corrosion protection in conformance with Section 3.8;
 (b) have a secondary containment system in conformance with Section 3.9;
 (c) have leak detection in conformance with Part 6;
 (d) have containment sumps, as applicable;
 (e) except as specified in Sentence 3.4.1(2), be provided with overfill protection:
 (i) compatible with the intended method of filling;
 (ii) designed, built, and approved in conformance with ORD-C58.15-1992, “Overfill Protection Devices for Flammable Liquid Storage Tanks,” which will prevent filling the tank beyond 95% of the tank’s capacity or activate an audible or combined audible/visual alarm at a product level of 90% of the tank’s capacity; and
 (iii) where a high-level alarm system is used, with audible and visual alarms located where personnel are constantly on duty during the product transfer operation and can promptly stop or divert delivery to the tank; and
 (f) have piping in conformance with Part 5, as applicable.

3.4.2 A horizontal storage tank shall be supported above grade level.

3.4.3 Where there is a dispenser, leak detection for the dispenser and related components shall be in conformance with Part 6.
Section 3.5 Aboveground Storage Tank Systems for Storing Used Oil

3.5.1(1) An aboveground used oil storage tank that is manually filled shall be designed, built, and approved in conformance with:
(a) ORD-C142.23-1991, “Aboveground Waste Oil Tanks”; or
(b) ULC-S652-1993, “Tank Assemblies for Collection of Used Oil”.

3.5.1(2) A used oil storage tank that is not manually filled shall be designed, built, and approved in conformance with ULC-S652-1993, “Tank Assemblies for Collection of Used Oil”. (See Appendix B, Note B.3.5.1(2))

Section 3.6 Design Standards

3.6.1(1) Based on the design, an aboveground storage tank shall be designed, built, and approved in conformance with the following, as applicable:
a) API Std 650-98, “Welded Steel Tanks for Oil Storage”;
b) ULC-S601-2000, “Aboveground Horizontal Shop Fabricated Steel Tanks”;
c) CAN/ULC-S602-1992, “Aboveground Steel Tanks for Fuel Oil and Lubricating Oil”;
d) ULC-S630-2000, “Aboveground Vertical Shop Fabricated Steel Tanks”;
e) CAN/ULC-S643-2000, “Aboveground Shop Fabricated Steel Utility Tanks”;
f) ULC-S652-1993, “Tank Assemblies for Collection of Used Oil”;
g) ULC-S653-1994, “Contained Aboveground Steel Tank Assemblies”;
h) ORD-C142.5-1992, “Aboveground Concrete Encased Steel Tank Assemblies”;
i) ORD-C142.18-1995, “Aboveground Rectangular Steel Tanks”;
j) ORD-C142.21-1995, “Aboveground Used Oil Systems”;
k) ORD-C142.22-1995, “Contained Aboveground Vertical Steel Tank Assemblies”; or

3.6.2 An overfill protection device shall be designed, built, and approved in conformance with ORD-C58.15-1992, “Overfill Protection Devices for Flammable Liquid Storage Tanks”.

3.6.3 A containment sump shall be designed, built, and approved in conformance with ORD-C107.21-1992, “Under-Dispenser Sumps”.

3.6.4 A liner shall be designed, built, and approved in conformance with ORD-C58.9-1997, “Secondary Containment Liners for Underground and Aboveground Tanks”.

3.6.5 An aboveground storage tank designed to contain an allied petroleum product shall be designed, built, and approved for use with that product.

3.6.6(1) An aboveground storage tank built in conformance with:
(a) API Spec 12B-95, “Bolted Tanks for Storage of Production Liquids”;
(b) API Spec 12D-94, “Field Welded Tanks for Storage of Production Liquids”; or
(c) API Spec 12F-94, “Shop Welded Tanks for Storage of Production Liquids”

shall be used only for the storage of production petroleum and allied petroleum products.
Section 3.7 Repair, Alteration, Reconstruction, and Relocation

3.7.1(1) The repair, alteration, reconstruction, or relocation of an aboveground storage tank system shall be done in conformance with the technical requirements of, as applicable:
(a) ULC-S601(A)-2001, “Shop Refurbishing of Aboveground Horizontal Shop Fabricated Steel Tanks”;
(b) ULC-S630(A)-2001, “Shop Refurbishing Aboveground Vertical Shop Fabricated Steel Tanks”;
(c) API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction”;
(d) STI SP001-00, “Standard for Inspection of In-service Shop Fabricated Aboveground Tanks for the Storage of Flammable and Combustible Liquids”; or
(e) the special acceptance procedures of ULC or API.

3.7.2 The owner of an aboveground storage tank system shall provide a revised as-built drawing in conformance with Sentence 3.2.7(2) to the authority having jurisdiction in a time frame specified by the authority having jurisdiction whenever new construction, alteration, or site upgrade occurs.

Section 3.8 Corrosion Protection of Aboveground Steel Storage Tank Systems

3.8.1(1) When cathodic protection is used, it shall be designed by a corrosion expert (See Appendix B, note B.3.8.1(1)) and be in conformance with:
(a) API RP 651-97, “Cathodic Protection of Aboveground Petroleum Storage Tanks”;
(b) API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction”;
(c) NACE RP0193-2001, “External Cathodic Protection of On-Grade Carbon Steel Storage Tank Bottoms”; or
(d) STI R893-89, “Recommended Practice for External Corrosion Protection of Shop Fabricated Aboveground Tank Floors.”

3.8.2(1) Atmospheric corrosion of an aboveground storage tank system shall be controlled by:
(a) a protective coating applied in conformance with the coating manufacturer’s instructions;
(b) a corrosion control program in accordance with API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction”; or
(c) the use of a non-corroding material in its construction.

Section 3.9 Secondary Containment Requirements

3.9.1(1) Subject to Sentences (2) and (3), a secondary containment system for an aboveground storage tank shall:
(1) for a storage tank system that consists of a single storage tank, have a volumetric capacity of not less than 110% of the capacity of the tank; or
(2) for a storage tank system that consists of more than one storage tank, have a volumetric capacity of not less than the sum of:
(i) the capacity of the largest storage tank located in the contained space; and
(ii) 10% of the greater of:
(a) the capacity specified in Clause (a); or
(b) the aggregate capacity of all other storage tanks located in the contained space.

3.9.1(2) A secondary containment system for a shop-fabricated storage tank shall be designed, built, and approved in conformance with:
(a) ULC-S653-1994, “Contained Aboveground Steel Tank Assemblies”; or
(b) ULC-S655-1998, “Aboveground Protected Tank Assemblies”; or
(c) ORD-C142.5-1992, “Aboveground Concrete Encased Steel Aboveground Tank Assemblies”; or
(d) a recognized standard for double-wall tanks.
3.9.1(3) A secondary containment system for a field-erected aboveground storage tank shall be:

(a) a single-wall and single-bottom storage tank placed entirely within a dyked area, with an impermeable barrier in the floor of the containment area and in the dyke walls;

(b) a single-wall, double-bottom storage tank placed entirely within a dyked area, with an impermeable barrier in the floor of the containment area and in the dyke walls, sealed to the perimeter of the storage tank or pad when the liner is not installed under the tank;

(c) a double-wall storage tank for a storage tank with a capacity of 50 000 L or less; or

(d) a double-wall storage tank placed entirely within a dyked area, with an impermeable barrier in the floor of the containment area and in the dyke walls, for a storage tank with a capacity of more than 50 000 L.

3.9.2(1) Except as provided in Sentence (2), a secondary containment impermeable barrier shall be:

(a) designed, built, and approved in conformance with:
 (i) ORD-C58.9-1997, “Secondary Containment Liners for Underground and Aboveground Tanks”; or
 (ii) ORD-C142.20-1995, “Aboveground Secondary Containment Tanks”; and

(b) installed so that:
 (i) the liner is sealed to the perimeter of the storage tank or pad when the liner is not installed under the tank;
 (ii) the liner extends to the top of the dyke wall;
 (iii) the liner is covered with a non-combustible material of such nature and thickness that it will not fail when the secondary containment is exposed to fire; and
 (iv) liners that are intended to be exposed in service are listed for aboveground (exposed) use.

3.9.2(2) A secondary containment impermeable barrier that does not conform to Sentence (1) shall:

(a) use material compatible with the product being stored and acceptable to the authority having jurisdiction (See Appendix B, note 3.9.2(2)(a)); and

(b) be designed, constructed, and maintained to ensure a maximum hydraulic conductivity of 1×10^{-6} cm/s.

3.9.3(1) Liner penetrations shall be located at the high point or in a raised part of the dyke floor. (See Appendix B, note B.3.9.3(1))

3.9.3(2) All liner penetrations shall be sealed.

3.9.4 Monitoring of the interstitial space of the secondary containment system shall be provided in conformance with Part 6 of this Code.

Section 3.10 Spill Containment and Runoff Collection

3.10.1 Spills, overfills, and storm water from product transfer areas shall be contained, treated and disposed of in conformance with the applicable provincial or territorial regulations, guidelines or policies.

3.10.2 Containment area floors within dykes shall slope away from the tank base towards a sump at a slope greater than 1%.

3.10.3(1) An oil-water separator used to treat storm water runoff, overfills, or a spill from the product transfer area shall be sized for a minimum hydraulic flow rate of a ten year return, one hour storm event, with the one hour rainfall intensity data obtained for the nearest weather station, and:

(a) be designed, built, and approved in conformance with ULC-S656-2000, “Oil-Water Separators”; or
(b) conform to the following:

(i) be designed to produce a discharge of water that does not contain more than 15 mg/L of free oil and grease as measured by the partition-gravimetric method or other protocol as defined by the authority having jurisdiction;

(ii) be designed for an insoluble-in-water oil with a specific gravity of 0.875 ±0.025; and

(iii) be designed based on the hydraulic retention time required to separate oil with a particle droplet size of 60 microns from storm water.
Part 4 Design and Installation of Underground Storage Tank Systems

Section 4.1 Scope
4.1.1 This Part applies to the design and installation of a new underground storage tank system.

Section 4.2 General Requirements
4.2.1 Except as provided in this Part, the design, fabrication and installation of an underground storage tank system shall be in conformance with Part 4 of the NFCC.

4.2.2 An underground storage tank, components, and accessories, for which there is a recognized standard, shall be approved only for the uses indicated by the standard.

4.2.3 An underground storage tank system shall be designed and installed in accordance with the manufacturer's instructions, the appropriate standards, and this Code.

4.2.4(1) Except as specified in Sentence (2), an underground storage tank system shall be designed and installed to have:
 (a) double-wall tank(s) with monitorable interstitial space;
 (b) an overfill protection device;
 (c) a fill pipe spill containment device;
 (d) product removal or transfer connections located within a spill containment device;
 (e) an overfill protection device where the storage tank is filled by pump or remote manual fill;
 (f) where the fill port is outside, it shall be fitted with a spill containment device having a capacity of at least 25 L and the spill containment device shall be fitted with:
 (i) a rain cover; and
 (ii) a screen to prevent nuts, bolts, rags, and other such objects from entering the storage tank;
 (g) in-take venting with an open area at least twice the open area of the suction pipe as specified in 4.2.4(2)(c) to avoid vacuum collapse from high rate of product removal; and
 (h) leak detection in conformance with Part 6.

4.2.5 A company or individual that is authorized by the authority having jurisdiction shall verify that the design and installation of an underground storage tank system meets the requirements of this Code or other requirements as prescribed by the authority having jurisdiction.

4.2.6 An underground storage tank system shall be installed by a company or individual that is authorized by the authority having jurisdiction.

4.2.7 An underground storage tank shall be located and maintained to permit the eventual removal of the storage tanks when the storage tank system is taken out-of-service. (See Appendix B, note B.4.2.7)

4.2.8(1) The owner of an underground storage tank system shall provide an as-built drawing to the authority having jurisdiction in the manner and time frame as specified by the authority having jurisdiction.
4.2.8(2) As-built drawings for an underground storage tank system shall include, as a minimum:
(a) the outline of all storage tanks;
(b) the centerline of all piping or piping groups;
(c) the centerline of all underground electrical power and monitor sensor conduit;
(d) building foundation outlines;
(e) secondary containment systems; and
(f) property lines.

4.2.9(1) No person shall install an underground storage tank system unless:
(a) required permits or approvals have been obtained from the authority having jurisdiction;
(b) plans, drawings and specifications of the system or equipment have been examined by the authority having jurisdiction; and
(c) the plans, drawings and specifications referred to in Clause 3.2.8(1)(b) bear the stamp and signature of a professional engineer licensed to practice in the province/territory.

Section 4.3 Design Standards

4.3.1(1) An underground storage tank shall be designed, built, and approved in conformance with the following:
(a) CAN/ULC-S603-1992, “Underground Steel Tanks”;
(b) ULC-S615-1998, “Underground Reinforced Plastic Tanks”;
(c) ORD-C58.10-1992, “Underground Jacketed Steel Tanks”;
(d) ULC-S652-1993, “Tank Assemblies for Collection of Used Oil”; or
(e) CAN/ULC-S603.1-1992, “Galvanic Corrosion Protection Systems for Underground Steel Tanks”.

4.3.2 An overfill protection device shall be designed, built, and approved in conformance with ORD-C58.15-1992, “Overfill Protection Devices for Flammable Liquid Storage Tanks”.

4.3.3 A spill containment device shall be designed, built, and approved in conformance with ORD-C58.19-1992, “Spill Containment Devices for Underground Tanks”.

4.3.4 A dispenser sump shall be designed, built, and approved in conformance with ORD-C107.21-1992, “Under-Dispenser Sumps”.

4.3.5 A Liner shall be designed, built, and approved in conformance with ORD-C58.9-1997, “Secondary Containment Liners for Underground and Aboveground Tanks”.

4.3.6(1) Subject to Part 6, a leak detection device shall be designed, built, and approved in conformance with one of the following:
(a) ORD-C58.12-1992, “Leak Detection Devices (Volumetric Type) for Underground Storage Tanks”; or
(b) ORD-C58.14-1992, “Leak Detection Devices (Nonvolumetric) for Underground Tanks”.

4.3.6(2) Subject to Part 6, a leak detection method shall be in conformance with EPA/530/UST-90/007, “Standard Test Procedures for Evaluating Leak Detection Methods: Statistical Inventory Reconciliation Methods”.

4.3.7(1) A storage tank designed to contain allied petroleum products may be constructed of materials other than steel when necessitated by the properties of the liquid stored and approved for use with that liquid.

4.3.7(2) A storage tank shall:
(a) be designed, built, and approved in conformance with:
(i) CAN/ULC-S603-1992, “Underground Steel Tanks”;
(ii) CAN/ULC-S603.1-1992, “Galvanic Corrosion Protection Systems for Underground Steel Tanks”; or
(iii) ORD-C58.10-1992, “Underground Jacketed Steel Tanks”.

Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products
be constructed of materials compatible with the liquid to be stored; and
c) have corrosion protection in conformance with Section 4.5.

4.3.8(1) Secondary containment for underground storage tanks shall be designed, built, and approved in conformance with:
(a) for a double-wall steel storage tank, CAN/ULC-S603-1992, “Underground Steel Tanks;
(b) for a double-wall fibreglass-reinforced plastic storage tank, ULC-S615-1998, “Underground Reinforced Plastic Tanks”; or
(c) for a jacketed-steel storage tank, ORD-C58.10-1992 “Underground Jacketed Steel Tanks”.

Section 4.4 Installation

4.4.1(1) Petroleum or allied petroleum products shall not be placed in an underground storage tank until:
(a) a fill pipe and vent line have been installed in the tank; and
(b) all other openings have been sealed or piping systems have been installed in accordance with their operational requirements.

Section 4.5 Corrosion Protection of Underground Steel Storage Tank Systems

4.5.1(1) A steel underground storage tank system shall be provided with corrosion protection in conformance with:
(a) CAN/ULC-S603.1-1992, “Galvanic Corrosion Protection Systems for Underground Steel Tanks” including appendices;
(b) a storage tank built in conformance with CAN/ULC-S603-1992, “Underground Steel Tanks” and coated in conformance with CAN/ULC-S603.1-1992, “Galvanic Corrosion Protection Systems for Underground Steel Tanks” shall be provided with a cathodic protection system designed by a corrosion expert to conform with:
(i) CPPI/PACE Report 87-1, “Impressed Current Method of Cathodic Protection of Underground Petroleum Storage Tanks”; or
(ii) NACE RP0285-2002, “Corrosion Control of Underground Storage Tank Systems by Cathodic Protection”; or
(c) a storage tank with the entire primary tank surface encased in the interstice of a non-corrodbile jacket built in conformance with ORD-C58.10-1992, “Underground Jacketed Steel Tanks”; or
(d) a storage tank with the entire primary tank surface encased in a non-corrodbile jacket built in conformance with ORD-C58.20-1996 “Special Corrosion Protection Underground Tanks.”

4.5.2(1) Except for a storage tank jacketed in conformance with ORD-C58.10-1992 “Underground Jacketed Steel Tanks” or ORD-C58.20-1996 “Special Corrosion Protection Underground Tanks” or installed in a vault with backfill, the cathodic protection system on all new installations of steel underground storage tank systems shall be tested for electrical isolation and system effectiveness after final backfilling in order to allow any corrective measures to be completed before final grading and placement of asphalt or concrete covers, as applicable.

4.5.2(2) A cathodic protection system shall meet the requirements of Section 8.6 of this Code.

4.5.2(3) When a cathodic protection system does not satisfy the requirements as specified in Section 8.6, the owner shall take corrective action in accordance with the recommendations of a corrosion expert.

4.5.2(4) The owner of a underground storage tank system shall, upon completion of the installation, ensure that the cathodic...
protection system meets the requirements as specified in Section 8.6 and report in writing to the authority having jurisdiction the measured voltage potential(s) and whether or not cathodic protection has been achieved.

4.5.3(1) A new steel storage tank added to an existing system that already has an impressed current cathodic protection system shall:
(a) be in conformance with CAN/ULC-S603-1992, “Underground Steel Tanks”; and
(b) be electrically bonded into the impressed current cathodic protection system. (See Appendix B, note B.4.5.3(1)(b))

4.5.3(2) When a new storage tank built in conformance with CAN/ULC-S603.1-1992, “Galvanic Corrosion Protection Systems for Underground Steel Tanks” is installed near an existing CAN/ULC S603.1-1992, “Galvanic Corrosion Protection Systems for Underground Steel Tanks” storage tank, precautions shall be taken to ensure both the new and existing tanks are adequately protected. (See Appendix B, note B.4.5.3(2))

4.5.4(1) Impressed current cathodic protection shall be interlocked in such a manner that if the cathodic-protection system is turned off or bypassed either:
(a) power to the pump will be shut off; or
(b) audible and visual alarms will be turned on.

4.5.5 Impressed current cathodic-protection systems shall be equipped with a running time or a downtime totalizer. (See Appendix B, note B.4.5.5)

4.5.6(1) Cathodically protected storage tanks shall be installed with:
(a) test wires brought to the surface and fastened at an accessible location; or
(b) a permanent reference electrode and approved monitoring station, including test wires for each tank.
Part 5 Design and Installation of New Piping Systems

Section 5.1 Scope

5.1.1 This Part applies to the design and installation of piping associated with a storage tank system.

Section 5.2 General Requirements

5.2.1(1) Piping materials shall, as applicable, be designed, built, and approved in conformance with the following:

(a) ASTM A 53, “Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless”;

(b) CAN/CSA Z245.1-98, “Steel Line Pipe”;

(c) CAN/ULC-S633-1999, “Flexible Underground Hose Connectors”;

(d) ORD-C107.7-1993, “Glass-Fibre Reinforced Plastic Pipe and Fittings”;

(e) ORD-C107.4-1992, “Ducted Flexible Underground Piping Systems”;

(f) ORD-C107.14-1992, “Non-Metallic Pipe and Fittings”; or

(g) ORD-C536-1998, “Flexible Metallic Hose”.

5.2.2 Except as provided in this Part, the design and installation of piping shall be in conformance with the NFCC.

5.2.3 Except as provided in this Part, the design and installation of piping connected to an oil-burning appliance and equipment that comes within the scope of CSA Standard B139, “Installation Code for Oil Burning Equipment” shall be in conformance with that Code.

5.2.4 Piping material shall be installed and maintained in accordance with an approved standard, code, or in a manner acceptable to the authority having jurisdiction.

5.2.5 Single-wall piping shall not have buried or concealed mechanical joints. (See Appendix B, note B.5.2.5)

5.2.6 Leak detection testing and monitoring of piping shall be in conformance with Part 6.

5.2.7 A thermal relief valve shall discharge into the low pressure side of the piping.

5.2.8(1) Piping located below the maximum product level in a tank shall be provided with a means to prevent the release of liquid from the tank by syphon flow.

5.2.8(2) Except as provided in Sentence 5.2.8(3), a manual shut-off valve shall be lockable or have a method of locking.

5.2.8(3) A manual shut-off valve on the piping connecting a storage tank and a heating appliance or a stationary combustion engine does not need to be lockable or have a method of locking.

Section 5.3 Product Transfer

5.3.1 The fill pipe on a storage tank with a capacity of 5 000 L or more shall be equipped for the attachment of a liquid and vapour-tight connection at the time of filling and shall be sealed with a liquid- and vapour-tight cap when not in use.

5.3.2 The suction tube of a used oil tank shall be equipped for the attachment of a liquid-tight fitting and shall be sealed with a liquid-tight cap when not in use.

Section 5.4 Design Standard for Underground Piping Systems

5.4.1 Underground piping up to and including 75 mm in diameter shall have secondary containment in accordance with Sentence 5.4.4(1).
5.4.2(1) Underground piping larger than 75 mm in diameter shall be designed, installed and maintained to meet the requirements of:
(a) secondary containment in conformance with Sentence 5.4.4(1);
(b) leak detection in conformance with Part 6; or

5.4.3(1) Non-metallic piping may be used for underground installations provided the piping and fittings are designed, built, and approved in conformance with the requirements of:
(a) ORD-C107.7-1993, “Glass Fibre Reinforced Plastic Pipe and Fittings;” or
(b) ORD-C107.4-1992, “Ducted Flexible Underground Piping Systems.”

5.4.4(1) Secondary containment for underground piping shall:
(a) be designed, built, and approved in conformance with ORD-C107.7-1993, “Glass-Fibre Reinforced Plastic Pipe and Fittings”;
(b) be designed, built, and approved in conformance with ORD-C107.4-1992, “Ducted Flexible Underground Piping Systems”;
(c) consist of a single-wall fiberglass-reinforced plastic, or single-wall steel piping, contained within a duct designed, built, and approved in conformance with ORD-C107.19-1992, “Secondary Containment of Underground Piping”; or
(d) be double-wall steel piping provided with a cathodic protection system designed by a corrosion expert.

5.4.5(1) Secondary containment systems for piping shall be designed and installed such that leaks:
(a) accumulate in a containment sump that is readily available for visual inspection; or
(b) are detected by a monitoring system.

Section 5.5 Installation

5.5.1 Piping shall be installed by a company or individual that is authorized by the authority having jurisdiction.

5.5.2 Piping shall be located and maintained to permit the eventual removal of the piping when the storage tank system is permanently withdrawn from service.

5.5.3 Piping shall be located in a manner that will prevent allowable design stress from being exceeded.

5.5.4 Piping located aboveground shall be protected from physical damage due to impact.
Part 6 Monitoring and Leak Detection of Storage Tank Systems

Section 6.1 Scope

6.1.1 This Part applies to monitoring and \textit{leak detection} for a \textit{storage tank system}.

Section 6.2 General Requirements

6.2.1(1) A \textit{storage tank system} shall be tested for \textit{leaks} in conformance with Sections 6.2 and 6.3:

(a) for an \textit{underground storage tank system}, final installation shall be when final surface materials have been installed and prior to being put into service; or

(ii) for an \textit{aboveground storage tank system}, final installation shall be before the \textit{storage tank system} is put into service; and

(b) whenever a \textit{leak} is suspected in the primary or secondary containment of the \textit{storage tanks, piping, containment sumps or related components}.

6.2.2 A \textit{line-leak detector} shall be designed, built, and \textit{approved} in conformance with ORD-C107.12-1992, “Line Leak Detection Devices for Flammable Liquid Piping.”

6.2.3 Manual or electronic dip or inventory reconciliation shall be in conformance with Section 8.3.

6.2.4(1) Statistical inventory reconciliation shall be in conformance with:

(a) EPA/530/UST-90/007, “Standard Test Procedures for Evaluating Leak Detection Methods: Statistical Inventory Reconciliation Methods”; and

(b) EPA 510-B-95-009, “Statistical Inventory Reconciliation.”

6.2.5 An automatic tank gauge system with a \textit{precision leak detection} capability shall be designed, built, and \textit{approved} in conformance with ORD-C58.12-1992, “Leak Detection Devices (Volumetric Type) for Underground Storage Tanks”.

6.2.6 A continuous in-tank \textit{leak detection} system shall conform to good engineering practice and shall meet the requirements of a \textit{precision leak detection test}. (See Appendix B, Note B6.2.6.)

6.2.7(1) High-technology \textit{secondary containment} monitoring shall continuously monitor the \textit{interstitial space} and include the use of an automatic device designed, built, and \textit{approved} in conformance with:

(a) ORD-58.12-1992, “Leak Detection Devices (Volumetric Type) for Underground Storage Tanks”, or

(b)ORD-58.14-1992, “Leak Detection Devices (Nonvolumetric Type) for Underground Storage Tanks”.

6.2.8 Visual \textit{leak detection} procedures shall be performed in conformance with Sentence 8.4.1(3).

6.2.9(1) A \textit{pressure liquid media leak detection} test shall be in conformance with the requirements of a \textit{precision leak detection test} and:

(a) the test device shall be third-party performance certified; and

(b) testing technicians shall be trained in the care and use of the test device

6.2.10(1) A \textit{static liquid media leak detection} test shall be in conformance with the following requirements:

(a) leak rate shall not exceed 0.38 L/h;

(b) the duration of the test shall be a minimum of 1 hour;

(c) there shall be no visual evidence of a \textit{leak}; and
(d) the test fluid shall exceed the elevation of piping and electrical conduit openings installed in sumps at the time of the leak detection test.

6.2.11(1) A high-pressure inert gas or vacuum leak detection test for piping shall be in conformance with the following procedures, as applicable:

(a) a high-pressure decline test using an inert gas or a vacuum test may be used as a leak detection test for piping systems that are in use and that have a volume of less than 1,000 L;

(b) whenever permitted by the equipment design and installation, product contained in the piping system shall be drained prior to conducting the high-pressure inert gas or vacuum test procedure;

(c) pumps, dispensers or other auxiliary equipment connected to the piping that cannot be subjected to the pressure of the test shall be isolated from the test procedures to prevent equipment damage;

(d) a test pressure or vacuum shall, as applicable:

(i) be more than 350 kPa (gauge) or 1.5 times the maximum operating pressure, whichever is greater;

(ii) not exceed 700 kPa (gauge), except when the piping system is designed for such pressures; and

(iii) not exceed the equipment manufacturer’s design limitations.

(e) stabilization is required after pressurization or vacuum is achieved;

(f) a piping system with a volume of less than or equal to 500 L shall have the pressure or vacuum maintained for a period of at least 60 min after stabilization;

(g) a piping system with a volume of greater than 500 L but less than or equal to 1,000 L shall have the test pressure or vacuum maintained for a period of at least two hours after stabilization;

(h) a piping system with a volume greater than 1000 L shall be tested using a procedure acceptable to the authority having jurisdiction (See Appendix B, Note B6.2.11 (1) (h); and

(i) a piping system shall be considered to be leaking when pressure variations that occur after stabilization and within the test time period are greater than two percent of the test pressure or vacuum.

6.2.12(1) A low-pressure inert gas or vacuum leak detection test for piping shall be conducted in conformance with the following procedures, as applicable:

(a) a low-pressure decline test using an inert gas or a vacuum test may be used to conduct a leak detection test on the secondary containment of double-wall tanks and double-wall pipe;

(b) product contained in the secondary containment system shall be drained prior to conducting the low-pressure decline or vacuum test procedure;

(c) a test pressure or vacuum shall, as applicable:

(i) be between 20 kPa and 35 kPa; and

(ii) not exceed the equipment manufacturer’s design limitations;

(d) stabilization is required after pressurization or vacuum is achieved;

(e) secondary containment shall have the test pressure or vacuum maintained for a period of at least two hours after stabilization; and

(f) a piping system shall be considered to be leaking when pressure variations that occur after stabilization and within the test time period are greater than two percent of the test pressure or vacuum.

6.2.13(1) A precision leak detection test shall be in conformance with (See Appendix B, note B.6.2.13(1)):

(a) ORD-C58.12-1992, “Leak Detection Devices (Volumetric Type) for Underground Storage Tanks;” or

(b) ORD-58.14-1992, “Leak Detection Devices (Nonvolumetric Type) for Underground Tanks.”
Section 6.3 Leak Detection

Interlocks and Alarms

6.3.1(1) Subject to Sentence (2), an automatic leak detection device, including a high-technology secondary containment monitoring device and precision line leak detection device, shall be electrically interlocked in such a manner that:
(a) when the automatic leak detection device is activated, product flow shall be shut off; and
(b) except for on-site maintenance activities, when the automatic leak detection device is turned off or bypassed for more than one minute, product flow shall be terminated.

6.3.1(2) When an electrical interlock as specified in Sentence (1) is not possible, the authority having jurisdiction shall be notified whenever the leak detection device or method indicates a leak. (See Appendix B, note B.6.3.1(2))

6.3.2 A suction pump shall be equipped with a single check valve installed directly below the suction pump and piping shall slope so the contents of the pipe will drain back to the storage tank if the suction is broken.

6.3.3 A leak detection alarm shall be located where the staff routinely work and in a place where such alarms can be readily heard and seen.

Section 6.4 Monitoring Wells

6.4.1 When more than one monitoring well is necessary to monitor an installation effectively, the monitoring wells shall be numbered so that all monitoring and testing results can be easily correlated to a specific monitoring location.

6.4.2 A monitoring well shall be equipped with a liquid-proof cap.

6.4.3 A monitoring well shall be distinguished from a fill pipe and marked in conformance with CPPI (1995), “Using the CPPI Colour-Symbol System to Mark Equipment and Vehicles for Product Identification”

6.4.4 A monitoring well shall be secured to prevent unauthorized access and tampering.

6.4.5 A monitoring well located in a traffic area shall be cut off at ground level and/or properly protected from vehicles.

6.4.6 A monitoring well installed within the interstitial space shall not penetrate the liner.

6.4.7 A damaged monitoring well shall be repaired or replaced within 30 days after discovery of the damage.

6.4.8 A monitoring well shall be checked for liquid product and/or vapours at least monthly.

Section 6.5 Groundwater Monitoring Wells

6.5.1(1) When a vertical groundwater monitoring well is to be used, a professional hydrogeologist or other person authorized by the authority having jurisdiction shall:
(a) assess the site and establish the number and positioning of the monitoring wells so that product releases from any portion of the storage tank system that routinely contains a petroleum or allied petroleum product will be detected; and
(b) ensure compliance with the requirements of this Section.

6.5.2 The product stored in a storage tank shall be immiscible in water and shall have a specific gravity of less than one.

6.5.3 The hydraulic conductivity of the soil between a storage tank system and the monitoring wells shall not be less than 0.01 cm/s. (See Appendix B, note B 6.5.3)

6.5.4 The monitoring wells shall intercept the excavation zone of an underground storage tank or be as close as technically possible.
6.5.5 A monitoring well shall be a minimum of 50 mm in diameter.

6.5.6 Subject to Sentence 6.5.11(1), if a monitoring well is to be used as a recovery well, the screened zone shall extend at least 1.5 m into the water table and at least 1.5 m above the groundwater surface, as determined at the time of installation.

6.5.7 Subject to Sentence 6.5.11(1), the screened portion of a monitoring well shall be a minimum of 3.0 m in length and shall be factory slotted with a slot size of 0.25 mm or as approved by the authority having jurisdiction.

6.5.8 The area around the screened portion of a monitoring well shall be surrounded by a filter pack. (See Appendix B, note B.6.5.8)

6.5.9 Subject to Sentence 6.5.11(1), the filter pack shall extend to 0.5 m above the top of the screened portion of monitoring wells.

6.5.10 Subject to Sentence 6.5.11(1), the outside of a monitoring well shall be sealed from the ground surface to the top of the filter pack using bentonite, grout, or other material with equivalent performance.

6.5.11(1) Where the groundwater surface is less than 2.5 m from the ground surface, a professional hydrogeologist or other person authorized by the authority having jurisdiction shall determine the length and position of:
(a) the screened portion of a well;
(b) the filter pack; and
(c) the bentonite, grout, or other material with equivalent performance seal.

6.5.12 A monitoring well shall be installed with a cap or plug at the bottom of the screened section of the well.

6.5.13 A monitoring well shall be constructed of flush joint, threaded, or bell and spigot Schedule 40 PVC or equivalent. (See Appendix B, note B.6.5.13)

6.5.14 A continuous monitoring device or a manual method shall detect a minimum of 3 mm of free product on top of the groundwater surface in the monitoring well.

Section 6.6 Vapour Monitoring Wells

6.6.1(1) Where vapour monitoring is to be used, a professional hydrogeologist or other person authorized by the authority having jurisdiction shall:
(a) assess the site and establish the number and positioning of the monitoring wells so that product releases from any portion of the storage tank system that routinely contains a petroleum or allied petroleum product will be detected; and
(b) ensure compliance with the requirements of this Section.

6.6.2 The product stored or tracer compound placed in the storage tank system shall be sufficiently volatile to result in a vapour level that is detectable by the monitoring devices.

6.6.3 The measurement of vapours by the monitoring device shall not be rendered inoperative by the groundwater, rainfall, soil moisture, or other known interferences so that a leak could go undetected for more than 30 days.

6.6.4 The level of background contamination shall not interfere with the method used to detect leaks from the storage tank system.

6.6.5 A vapour monitor shall have its performance validated by a third-party testing organization in conformance with ORD-C58.14-1992, “Leak Detection Devices (Nonvolumetric) for Underground Tanks”.
6.6.6(1) A vapour monitor shall be designed and installed to detect any significant increase in concentration above the background level of:
(a) the petroleum or allied petroleum product stored;
(b) a component or components of the petroleum or allied petroleum product; or
(c) a tracer compound placed in the storage tank system.

Section 6.7 Frequency and Method

6.7.1 The reference letters in Table 2 represent the leak detection and monitoring methods specified in Tables 3 through 9.

6.7.2(1) Tables 3 through 9 specify the frequencies and methods of leak detection and monitoring that shall be used upon installation and, as applicable (See Appendix B, note B.6.7.2(1)):
(a) for in-service monitoring;
(b) for periodic leak detection testing; or
(c) if a leak is suspected.

Table 2 - Leak Detection and Monitoring Methods

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Leak detection and Monitoring Method Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATG</td>
<td>Automatic tank gauge with monthly precision leak detection test</td>
</tr>
<tr>
<td>CITLD</td>
<td>Continuous in-tank leak detection system with monthly leak detection test (results are limited to an evaluation of the storage tank only)</td>
</tr>
<tr>
<td>CITLDS</td>
<td>Continuous in-tank leak detection system with monthly leak detection test (results provide an evaluation of the storage tank and piping system)</td>
</tr>
<tr>
<td>ELLD</td>
<td>Electronic line leak detection device</td>
</tr>
<tr>
<td>HPVLDT</td>
<td>High-pressure inert gas or vacuum leak detection test</td>
</tr>
<tr>
<td>HTSCM</td>
<td>High-technology secondary containment monitoring</td>
</tr>
<tr>
<td>IR</td>
<td>Manual dip and inventory reconciliation; electronic dip and electronic inventory reconciliation; or electronic dip and manual inventory reconciliation in conformance with Section 8.3</td>
</tr>
<tr>
<td>LPVLDT</td>
<td>Low-pressure inert gas or vacuum leak detection test</td>
</tr>
<tr>
<td>MLLD</td>
<td>Mechanical line leak detection device</td>
</tr>
<tr>
<td>OWM</td>
<td>Observation well vapour or groundwater monitoring (monthly)</td>
</tr>
<tr>
<td>PLDT</td>
<td>Precision leak detection test of a storage tank (See Appendix B, note B.6.2.13(1))</td>
</tr>
<tr>
<td>PLMLDT</td>
<td>Pressure liquid media leak detection test</td>
</tr>
<tr>
<td>SIR</td>
<td>Statistical inventory reconciliation (monthly reporting)</td>
</tr>
<tr>
<td>SLMLDT</td>
<td>Static liquid media leak detection test</td>
</tr>
<tr>
<td>SVCV</td>
<td>Single, vertical check valve</td>
</tr>
<tr>
<td>VLD</td>
<td>Visual leak detection (weekly)</td>
</tr>
</tbody>
</table>

See Section 6.2 for definition and performance requirements of the prescribed methods.
See Appendix B, note B.6.3.2(1)
Table 3 – New Underground Storage Tanks

<table>
<thead>
<tr>
<th>Containment</th>
<th>Final Installation Leak Detection</th>
<th>In-service Monitoring</th>
<th>Periodic Leak Detection</th>
<th>Leak Suspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-wall tanks</td>
<td>PLDT</td>
<td>SIR; VLD; ATG; HTSCM; CITLDS; or CITLD</td>
<td>Not required</td>
<td>PLDT</td>
</tr>
</tbody>
</table>

Table 4 – Aboveground Storage Tanks

<table>
<thead>
<tr>
<th>Containment</th>
<th>Final Installation Leak Detection</th>
<th>In-service Monitoring</th>
<th>Periodic Leak Detection</th>
<th>Leak Suspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-wall tanks</td>
<td>VLD</td>
<td>HTSCM; or VLD</td>
<td>Not required</td>
<td>VLD<sup>(1)</sup>; PLDT; or LPVLDT<sup>(1)</sup></td>
</tr>
<tr>
<td>API Std 650-98 (within approved secondary containment)</td>
<td>API 650 standard</td>
<td>IR and VLD; or HTSCM</td>
<td>API 653</td>
<td>PLDT; or API 653</td>
</tr>
<tr>
<td>API Std 650-98 (within non-approved secondary containment)</td>
<td>IR and VLD</td>
<td></td>
<td>API Std 653-01; or PLDT (annually)</td>
<td>PLDT; or API Std 653-01</td>
</tr>
<tr>
<td>Single wall vertical tanks (within approved secondary containment)</td>
<td>VLD</td>
<td>IR and VLD; or HTSCM</td>
<td>API Std 653-01</td>
<td>PLDT; or API Std 653-01</td>
</tr>
<tr>
<td>Single-wall vertical tanks (within non-approved secondary containment)</td>
<td>IR and VLD</td>
<td></td>
<td>API Std 653-01; or PLDT (annually)</td>
<td>PLDT; or API Std 653-01</td>
</tr>
<tr>
<td>Horizontal tanks</td>
<td>VLD</td>
<td>IR and VLD</td>
<td>Not required</td>
<td>VLD<sup>(1)</sup>; or PLDT</td>
</tr>
</tbody>
</table>

⁽¹⁾ on the interstice only
⁽²⁾ where entire system including piping is visible

Table 5 - Underground Piping

<table>
<thead>
<tr>
<th>Containment</th>
<th>Final Installation Leak Detection</th>
<th>In-service Monitoring</th>
<th>Periodic Leak Detection</th>
<th>Leak Suspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-wall (greater than 75mm)</td>
<td>PLMLDT; or HPVLDT</td>
<td>OWM</td>
<td>PLMLDT; or HPVLDT</td>
<td>PLMLDT; or HPVLDT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CITLDS; or ELLD</td>
<td>(every year)</td>
<td></td>
</tr>
<tr>
<td>Double-wall</td>
<td>PLMLDT; or HPVLDT and LPVLDT</td>
<td>ELLD; Sensor; CITLDS; or SVCV<sup>(1)</sup></td>
<td>Not required</td>
<td>PLMLDT; or HPVLDT</td>
</tr>
</tbody>
</table>

⁽¹⁾ Suction style system only
Table 6 - Aboveground Piping

<table>
<thead>
<tr>
<th>Containment</th>
<th>Final Installation Leak Detection</th>
<th>In-service Monitoring</th>
<th>Periodic Leak Detection</th>
<th>Leak Suspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>All types</td>
<td>PLMLDT; or HPVLDT</td>
<td>VLD</td>
<td>Not required</td>
<td>PLMLDT; or HPVLDT</td>
</tr>
</tbody>
</table>

Table 7 – Turbine, Transition and Dispenser Sumps

<table>
<thead>
<tr>
<th>Containment</th>
<th>Final Installation Leak Detection</th>
<th>In-service Monitoring</th>
<th>Periodic Leak Detection</th>
<th>Leak Suspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispenser Sumps</td>
<td>SLMLDT</td>
<td>HTSCM; or VLD</td>
<td>Not required</td>
<td>SLMLDT</td>
</tr>
<tr>
<td>Turbine and transition sumps</td>
<td>SLMLDT</td>
<td></td>
<td>VLD (annually)(^{\text{a}})</td>
<td>SLMLDT</td>
</tr>
</tbody>
</table>

\(^{a}\text{In conformance with Clause 8.4.1(4)(g)}\)

Table 8 - Existing Single-Wall Underground Storage Tanks

<table>
<thead>
<tr>
<th>Type</th>
<th>In-service Monitoring</th>
<th>Periodic Leak Detection</th>
<th>Leak Suspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel without CP(^{a})</td>
<td>IR; and OWM or SIR</td>
<td>PLDT (annually)</td>
<td>PLDT</td>
</tr>
<tr>
<td>Steel with CP(^{a}), FRP(^{a});</td>
<td>IR; and OWM or SIR</td>
<td>PLDT (every 2 years)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATG; or CITLDS</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OWM and SIR</td>
<td>Not required</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\text{CP - Cathodic protection}\)

Table 9 – Existing Single-Wall Underground Piping

<table>
<thead>
<tr>
<th>Type</th>
<th>In-service Monitoring</th>
<th>Periodic Leak Detection</th>
<th>Leak Suspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel without CP(^{a})</td>
<td>IR; and OWM or SIR</td>
<td>PLMDT; or HPVLDT (annually)</td>
<td>PLMDT; or HPVLDT</td>
</tr>
<tr>
<td>Steel with CP(^{a}), plastic, or FRP(^{a})</td>
<td>IR; and OWM or SIR</td>
<td>PLMDT; or HPVLDT (every 2 years)</td>
<td>PLMDT; or HPVLDT</td>
</tr>
<tr>
<td></td>
<td>CITLDS; or OWM and SIR</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVCV(^{a}); or ELLD(^{a})</td>
<td>Not required</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\text{CP - Cathodic protection}\)

\(^{a}\text{FRP - Fibreglass reinforced plastic}\)

\(^{a}\text{Suction style system only}\)

\(^{a}\text{Pressure Piping}\)

Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products
Part 7 Upgrading of Existing Storage Tank Systems

Section 7.1 Scope
7.1.1 This Part applies to an existing storage tank system.

Section 7.2 General Requirements
7.2.1 No person shall upgrade, or cause to be upgraded, an existing storage tank system unless approval has been obtained from the authority having jurisdiction.

7.2.2(1) Where an existing storage tank system is upgraded to be in conformance with this Code, the owner shall provide a revised as-built drawing to the authority having jurisdiction in the manner and time frame as specified by the authority having jurisdiction.

7.2.2(2) A revised as-built drawing shall be in conformance with Sentence 3.2.7(2) or 4.2.8(2), as applicable.

7.2.3 A partially buried storage tank is considered neither an aboveground nor underground storage tank and shall be withdrawn from service and removed in conformance with Part 9 within two years of the effective date of this Code.

Section 7.3 Aboveground Storage Tank Systems
7.3.1 An existing aboveground storage tank system not in conformance with Section 3.6 shall be withdrawn from service and removed in conformance with Part 9 within two years of the effective date of this Code.

7.3.2(1) Where underground piping connected to an aboveground storage tank has corrosion protection in conformance with Section 4.5 at the effective date of this Code, the piping may continue in service.

7.3.2(2) Where underground piping connected to an aboveground storage tank does not have corrosion protection in conformance with Section 4.5 at the effective date of this Code:
(a) the piping must be withdrawn from service and removed in conformance with Part 9 within two years of the effective date of this Code; or
(b) best management practices shall be implemented within two years of the effective date of this Code in conformance with:
 i) API Std 2610-94, “Design, Construction, Operation, Maintenance and Inspection of Terminal and Tank Facilities”; and
 ii) API 570-98, “Piping Inspection Code: Inspection, Repair, Alteration, and Rerating of In-Service Piping Systems”.

7.3.3(1) Except as specified in Sentence (2), an aboveground storage tank system shall be upgraded within two years of the effective date of this Code to include, as applicable:
(a) liquid and vapour-tight connections, caps and adapters for a storage tank with a capacity of 5 000 L or more;
(b) overfill protection in conformance with Article 3.6.2 for a storage tank with a capacity of 5 000 L or more;
(c) underground piping in conformance with Section 5.4;
(d) dispenser sumps in conformance with Article 3.6.3, where an underground piping run terminates under a dispenser; and
(e) secondary containment in conformance with Section 3.9 and Sentences 7.3.4(1) and (2).

7.3.3(2) Where secondary containment is not upgraded as provided in Clause (1)(e), an annual precision leak detection test shall be performed.
7.3.4(1) Except as provided in Sentence (2), an existing field-erected aboveground storage tank not upgraded to be in conformance with Section 3.3 shall be withdrawn from service and removed in conformance with Part 9 within five years of the effective date of this Code.

7.3.4(2) Where authorized by the authority having jurisdiction, an existing field-erected aboveground storage tank may be exempt from adding an impermeable barrier under the tank to meet the secondary containment requirements of Section 3.9 provided that within two years of the effective date of this Code:
(a) best management practices are followed in conformance with API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction”; or
(b) if inspection requires replacing or lining the tank bottom, then 3.9.2(1)(b) shall apply (See Appendix B, note B.7.3.4(2)(b)).

7.3.4(3) In the event that a storage tank owner chooses the exemption provided in Clause 7.3.4(2)(b) and the storage tank bottom or shell becomes perforated, then all other storage tanks with equal or more years of similar service at that site that are being managed under API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction”, shall be:
(a) inspected within one year; or
(b) re-evaluated within the time frame specified by the new corrosion rate.

7.3.5 An existing aboveground storage tank not upgraded with spill containment and runoff collection in conformance with Section 3.10 shall be withdrawn from service and removed in conformance with Part 9 within five years of the effective date of this Code.

7.3.6 An existing shop fabricated aboveground storage tank system not upgraded to be in conformance with Sections 3.4, 3.5, and this Section shall be withdrawn from service and removed in conformance with Part 9 within two years of the effective date of this Code.

Section 7.4 Underground Storage Tank Systems

7.4.1 An existing underground storage tank system that does not have corrosion protection shall be withdrawn from service and removed in conformance with Part 9 within two years of the effective date of this Code.

7.4.2 Where an existing underground storage tank system with corrosion protection is not upgraded in conformance with Sentences 7.4.3(1) or (2), it shall be withdrawn from service and removed in conformance with Part 9 within two years of the effective date of this Code.

7.4.3(1) Except as provided in Sentence 7.4.3(2), an existing underground storage tank system with corrosion protection must be upgraded to include:
(a) liquid and vapour-tight connections, caps and adapters;
(b) an overfill protection device;
(c) a fill pipe spill containment device;
(d) dispenser sumps; and
(e) leak detection in conformance with Part 6.

7.4.3(2) An existing underground storage tank system with corrosion protection that is used for storing used oil shall be upgraded to include:
(a) liquid-tight connections, caps and adapters;
(b) a suction pipe in conformance with Clause 4.2.4.2(c)
(c) a spill containment device in conformance with Clauses 4.2.4.2(d) and (f);
(d) an overfill protection device in conformance with Clause 4.2.4.2(e);
(e) venting in conformance with Clause 4.2.4.2(g); and
(f) leak detection in conformance with Part 6.
Part 8 Operation and Maintenance

Section 8.1 Scope
8.1.1 This Part applies to the operation and maintenance of a storage tank system.

Section 8.2 General Requirements
8.2.1 Except as provided in this Part, the operation and maintenance of a storage tank system shall be in conformance with the NFCC.

Section 8.3 Inventory Control
8.3.1(1) Except as provided in Sentence 8.3.1(2), the owner of a storage tank system shall ensure that inventory control and reconciliation is conducted in conformance with this Section.

8.3.1(2) Subject to Sentence 8.3.2(1), inventory control and reconciliation is not required where:
(a) a storage tank system has been temporarily withdrawn from service and the tanks have been emptied; or
(b) all components designed to contain liquids are secondarily contained and have an interstitial space monitored:
(i) manually on any day the storage system is available for use; or
(ii) continuously using electronic sensing that provides a visual or auditory indication of the integrity of the interstice being compromised.

8.3.2(1) The owner of a motive fuel storage tank shall ensure that:
(a) the product level is measured and reconciled (See Appendix B, note B.8.3.2(1)(a)) in conformance with Sentence 8.3.2(2):
(i) each day that product is added or removed from an underground storage tank; or
(ii) at least weekly where product is added to or removed from an aboveground storage tank system; and
(b) the water level shall be measured and included in all reconciliation computations in conformance with Clause (a).

8.3.2(2) Storage tank inventory control measurements shall be reconciled by comparing product and water level measurements with dispenser meter readings, shipments, deliveries and internal transfers.

8.3.2(3) The computation of any gain or loss of product shall be recorded and included with a monthly summary of cumulative losses or gains of product.

8.3.3 Inventory control and reconciliation records shall be kept in a manner and format as prescribed by the authority having jurisdiction.

8.3.4(1) For an underground storage tank, the authority having jurisdiction shall be notified immediately, in conformance with Section 8.9, in the event of:
(a) any unexplained loss in excess of the greater of:
(i) 0.5% of the throughput in one month from the tank system, as indicated by the recording and reconciliation of inventory records over a month recording period done in conformance with Article 8.3.2; or
(ii) 0.5% of the storage tank system capacity;
(b) inventory reconciliation showing five or more consecutive days of unexplained product losses;
(c) inventory reconciliation showing 18 or more days of unexplained losses in one calendar month; or
(d) the level of water at the bottom of the tank exceeds 50 mm.
8.3.4(2) For an aboveground storage tank, the authority having jurisdiction shall be notified immediately, in conformance with Section 8.9, in the event of:
(a) any unexplained loss in excess of the greater of:
 (i) 1% of the throughput in one month from the storage tank system as indicated by the recording and reconciliation of inventory records done in conformance with Article 8.3.2; or
 (ii) 1% of the storage tank system capacity.
(b) inventory reconciliation showing five or more consecutive weeks of unexplained product losses; or
(c) inventory reconciliation showing an unexplained loss in one calendar month.

Section 8.4 Inspections and Maintenance of Storage Tank Systems

8.4.1(1) Routine in-service inspections shall be conducted in conformance with this Section.

8.4.1(2) Visual inspection of a storage tank facility to ensure that there has not been a leak or deterioration of the facility that could result in a leak shall be conducted and documented either:
(a) each day the facility is in operation; or
(b) at a frequency specified by the authority having jurisdiction. (See Appendix B, note B.8.4.1(2)(b))

8.4.1(3) Visual inspection of a storage tank facility to ensure that there has not been a leak or equipment failure shall be conducted weekly and documented for:
(a) foundations, tank walls, roof, and tank attachments;
(b) dyke capacity, condition of the dyke wall and floor, and water removal systems;
(c) pumps and product-handling equipment;
(d) tank gauging equipment;
(e) mechanical and automatic electronic leak detection equipment;
(f) dispenser sumps and spill containment devices; and
(g) overfill protection devices.

8.4.1(4) Inspection and performance testing in conformance with the manufacturer’s requirements and procedures to ensure satisfactory equipment performance and operation of a storage tank facility shall be conducted annually and documented by a company or individual that is authorized by the authority having jurisdiction for:
(a) automatic tank gauges and monitoring systems;
(b) high-technology sensors;
(c) electronic or mechanical leak detection equipment;
(d) corrosion protection equipment;
(e) pressurized piping emergency valves;
(f) emergency shut-down devices;
(g) containment sumps including dispenser, turbine and transition containment devices; and
(h) overfill protection devices.

8.4.1(5) In addition to Sentence (4), a storage tank not in service at the time of the inspection shall be noted on the inspection report stating:
(a) date taken out-of-service; and
(b) whether the tanks:
 (i) will be out-of-service for less than 180 days;
 (ii) will be out-of-service for a period exceeding 180 days; or
 (iii) are operated on a seasonal basis.

8.4.2 Where required by Part 6, an aboveground storage tank system installed in conformance with API Std 650-98, “Welded Steel Tanks for Oil Storage” shall be inspected in conformance with API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction”.

33
8.4.3 Any deficiencies in a storage tank system identified as a result of the inspections specified in this Section shall be documented and corrected to be in conformance with this Code by a company or individual that is authorized by the authority having jurisdiction.

Section 8.5 Product Transfer Operations

8.5.1 A person responsible for transferring petroleum or allied petroleum product to a storage tank system shall take all reasonable steps to prevent spills.

8.5.2(1) When a tank vehicle is being unloaded, the vehicle operator shall remain:
(a) in constant view of the fill pipe; and
(b) in constant attendance at the delivery control valve. (See Appendix B, note B.8.5.2(1)(b))

8.5.3(1) Transfer of petroleum or allied petroleum product into and out of a storage tank system shall be in conformance with procedures outlined in:
(a) the NFCC;
(b) API Std 2610-94, “Design, Construction, Operation, Maintenance, and Inspection of Terminal and Tank Facilities”; and
(c) CPPI (1992), “Professional Driver’s Manual”.

8.5.3(2) Standard procedures for normal operation, as well as for emergencies, shall be given to an operator and posted in printed form for convenient reference. An employee involved with the transfer of petroleum or allied petroleum product shall be trained in the correct operating procedures for all equipment and shut-down devices. (See Appendix B, note B.8.5.3(2))

8.5.4 The owner of a storage tank system shall ensure that filler ports, monitoring wells, and vapour recovery connections are colour-coded in conformance with CPPI (1995), “Using the CPPI Colour-Symbol System to Mark Equipment and Vehicles for Product Identification”.

8.5.5 A used oil storage tank shall be fitted with a suction tube and liquid- and vapour-tight coupling and shall not have suction hoses dropped or inserted into the used oil storage tank during the product removal process.

8.5.6 No person shall transfer used oil from a storage tank unless a connection is made to the coupling at the end of the storage tank suction tube.

8.5.7(1) Subject to Sentence (2), no person shall transfer petroleum or allied petroleum product to an aboveground storage tank with a capacity of 5 000 L or more unless a liquid- and vapour-tight fill connection is made to the storage tank.

8.5.7(2) No person shall transfer petroleum or allied petroleum product to an underground storage tank unless a liquid- and vapour-tight fill connection is made to the underground storage tank.

8.5.8 No person shall cause an allied petroleum product to be transferred into a storage tank unless the product being transferred is compatible with the internal surface of the storage tank.

Section 8.6 Cathodic Protection Monitoring

8.6.1(1) Except as provided in Sentence (2), maintenance checks on the operation of a cathodic protection system shall be conducted in conformance with:
(a) CAN/ULC-S603.1-1992, “Galvanic Corrosion Protection Systems for Underground Steel Tanks” for sacrificial anode systems;
(b) NACE RP0169-2002, “Control of Corrosion on Underground or Submerged Metallic Piping Systems”;
8.6.1(2) *Cathodic protection* measurements for a storage tank system shall be conducted by a person with NACE CP Level 1 (CP tester minimum certification) or otherwise as authorized by the authority having jurisdiction, at commissioning, within one year of commissioning, and annually thereafter.

Section 8.7 Oil-water Separators

(see Appendix B, note B.8.7)

8.7.1 An *oil-water separator* intended to collect and separate free oil from water shall be designed and installed in conformance with Sentence 3.10.3(1).

8.7.2 An *oil-water separator* shall be equipped with a spill containment device at the point of oil removal in conformance with:

(a) ORD-C58.19-1992, “Spill Containment Devices for Underground Tanks”; or

(b) ORD-C142.19-1994, ”Spill Containment Devices for Aboveground Tanks”.

8.7.3 The operation, maintenance and inspection of an *oil-water separator* shall be in conformance with the requirements of the manufacturer’s instructions or as prescribed by the authority having jurisdiction.

8.7.4(1) Subject to Sentence (2), the depth of the free oil layer and separated solids accumulation in an *oil-water separator* shall be checked and recorded monthly.

8.7.4(2) If a monthly inspection is not possible, an *oil-water separator* shall be electronically monitored.

8.7.4(3) The depth of the free oil layer and separated solids accumulation in an *oil-water separator* shall be measured as close to the baffle as possible.

8.7.4(4) An *oil-water separator* shall have the free oil layer removed:

(a) continuously by an automatic skimmer; or

(b) at a maximum depth of 50 mm.

8.7.4(5) After a spill or leak, the depth of the free oil layer and separated solids accumulation in an *oil-water separator* shall be checked and recorded.

8.7.5 No person shall discharge tank bottom water or gasoline, solvents, used oil, glycol, detergents, or sludges from outside the storage tank system directly to an *oil-water separator*. (See Appendix B, note B.8.7.5)

8.7.6 The amount of solids entering an *oil-water separator* shall be minimized.

8.7.7(1) An *oil-water separator* shall have the separated solids removed:

(a) at a maximum depth of 150 mm; or

(b) at the maximum depth allowed by an automatic removal device.

8.7.8 Free oil, separated solids, and water from an *oil-water separator* shall be disposed of in a manner prescribed by the authority having jurisdiction.
Section 8.8 Transfer of Ownership

8.8.1 The new owner of a storage tank system shall notify the authority having jurisdiction in writing within 30 days of the transfer of ownership and provide the information specified by the authority having jurisdiction.

8.8.2 When the ownership of a storage tank system is transferred, all as-built drawings and records, or copies thereof required by this Code shall be transferred to the new owner of the storage tank system.

8.8.3 The owner of real property on which underground storage tanks are located shall inform the purchaser of the real property, in writing, of the existence of any underground storage tanks on the real property before the sale is closed. (See Appendix B, note B.8.8.3)

Section 8.9 Leak and Spill Response

8.9.1 The owner of each registered storage tank system shall prepare and maintain an emergency response contingency plan.

8.9.2(1) The owner or operator of a storage tank system shall immediately notify the authority having jurisdiction (See Appendix D- Spill Reporting) and provide the information requested when the owner or operator discovers, suspects, or is notified by any person of:
(a) any leak from a storage tank system;
(b) any spill or overfill that is 100 L or more; or
(c) any spill or overfill that could threaten fresh water supplies, groundwater, or the health and safety of the public.

8.9.3(1) The owner of a storage tank system where a leak or spill is known or suspected shall, in consultation with the authority having jurisdiction, take such actions as the authority having jurisdiction requires to verify, stop, clean up, and mitigate the impact of the leak or spill, including but not limited to:
(a) isolating leaking components of the storage tank system;
(b) arranging for immediate removal of the petroleum or allied petroleum product from the isolated leaking components of the storage tank system;
(c) inspecting the storage tank or piping and:
 (i) arranging for a leak test in conformance with this Code; or
 (ii) removing the suspected leaking storage tank or piping;
(d) taking all reasonable steps to establish the extent of the contamination (including vapours), contain the leaked or spilled petroleum or allied petroleum product, and prevent its further migration; and
(e) taking all reasonable steps to recover or remove escaped petroleum or allied petroleum product in conformance with Sentence 9.4.2(2).

Section 8.10 Precision Leak Detection Test

8.10.1 In addition to the requirements of Part 6, the owner of a storage tank system shall conduct a precision leak detection test when required by the authority having jurisdiction.

8.10.2(1) A precision leak detection test shall be conducted by a company or individual authorized by the authority having jurisdiction and shall be conducted by an individual that has been trained in the proper care and use of the test equipment and it’s operating procedures.

8.10.2(2) When a precision leak detection test has been required by Part 6 or the authority having jurisdiction, a precision leak test report shall be forwarded by the owner to the authority having jurisdiction within ten days of the test.
A precision leak detection test report shall contain as a minimum:
(a) storage tank and piping identification number and product type;
(b) owner’s name and mailing address;
(c) facility address;
(d) test date;
(e) test results;
(f) test methods;
(g) test technician certification number provided by the test equipment manufacturer to verify satisfactory completion of applicable training and certification requirements; and
(h) name and address of testing company or technician.

Where a precision leak detection test or inspection indicates a leak, the company or individual performing the test shall immediately notify the owner or operator of the storage tank system and the authority having jurisdiction.

Section 8.11 Records

The owner of a storage tank system shall maintain records for at least seven years of all:
(a) inventory control and reconciliation as required by Section 8.3;
(b) inspections and maintenance as required by Section 8.4;
(c) cathodic protection monitoring as required by Section 8.6;
(d) precision leak detection tests as required by Section 8.10;
(f) maintenance and repairs;
(g) monitoring well results;
(h) construction, alterations, or upgrades;
(i) as-built drawings; and
(j) excavation or nearby construction that could affect the integrity of the storage tank system.

Subject to Sentence (3), the owner of a storage tank system shall maintain records required by this Code on-site.

The authority having jurisdiction may allow computerized records to be stored off-site.

The owner of an oil-water separator shall maintain records of:
(a) the free oil layer in the separator;
(b) the separated solids level, measured at a point where the maximum buildup can be expected;
(c) the date and quantity of oil removed;
(d) the date and quantity of separated solids removed;
(e) the name of the contractor; and
(f) all inspections and maintenance.

Section 8.12 Tank Bottom Water

Tank bottom water shall:
(a) not be drained onto the ground or into an oil-water separator (See Appendix B, note B8.12.1(1)(a)); and
(b) be segregated from rainwater and disposed of in conformance with the applicable provincial or territorial regulations, guidelines and policies.

Section 8.13 Storage

In an aboveground storage tank system, the space created by secondary containment shall not be used for storage purposes.

Section 8.14 Transfer of Oil-contaminated Water

Centrifugal-type pumps shall not be used to transfer oil-contaminated water from dykes or sumps to the oil-water separator.
Part 9 Withdrawal from Service of Storage Tank Systems

Section 9.1 Scope

9.1.1 This Part applies to procedures to be followed when a storage tank system is removed, relocated, abandoned, disposed of, refurbished, or temporarily taken out-of-service.

Section 9.2 General Requirements

9.2.1 Except as provided in this Part, the withdrawal from service and removal of a storage tank system shall be in conformance with the NFCC and with any other requirements of the authority having jurisdiction.

9.2.2(1) A storage tank system shall be removed by a company or individual that is authorized by the authority having jurisdiction.

9.2.2(2) A company or individual removing a storage tank system shall ensure that the system is removed in conformance with the requirements of this Part.

Section 9.3 Temporary Withdrawal from Service

9.3.1 If a cathodic protection system is provided, it shall be maintained and operated while the storage tank system is temporarily withdrawn from service (See Appendix B, note B.9.3.1).

9.3.2(1) A shop-fabricated aboveground storage tank system shall pass an annual inspection in conformance with Sentence 8.4.1(4) before the storage tank system is returned to service.

9.3.2(2) A field-erected aboveground storage tank that has been out-of-service for more than one year shall, before being returned to service:

(a) pass an internal inspection conducted by an individual authorized by the authority having jurisdiction in conformance with API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction”; or
(b) pass a precision leak detection test.

9.3.2(3) For a field-erected aboveground storage tank that has been returned to service as specified in Sentence (2), the next internal inspection shall be the earlier of:
(a) within ten years of the most recent internal inspection; or
(b) at the date specified by API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction”.

9.3.3(1) Except for a storage tank system that has been registered with the authority having jurisdiction as operating on a seasonal basis, when a storage tank system is to be out-of-service for more than 180 days, the owner or operator shall notify the authority having jurisdiction in writing, within seven days after the storage tank system goes out-of-service, providing:
(a) the name and mailing address of the owner;
(b) the name and mailing address of the operator;
(c) the location of the storage tank system;
(d) a description of the nature and quantity of the contents; and
(e) the registration number of the storage tank.

Section 9.4 Removal from Service

9.4.1 The owner of a storage tank system shall notify the authority having jurisdiction within 30 days of a decision to remove a storage tank system and provide the information requested by the authority having jurisdiction.
9.4.2(1) When a storage tank system has been permanently removed from service, the owner of a storage tank system shall ensure that:
 (a) petroleum and allied petroleum products are removed and vapours purged from the storage tank, piping, dispensing, and transfer equipment; and
 (b) the storage tank, piping, dispensing, and transfer equipment are removed.

9.4.2(2) If the site is contaminated with petroleum or allied petroleum products, the site shall be remediated to the criteria defined by:
 (a) CCME PN 1299, “Canadian Environmental Quality Guidelines”;
 (b) CCME CWS for PHC, “Canada-wide Standards for Petroleum Hydrocarbons in Soil”; or
 (c) other criteria prescribed by the authority having jurisdiction.

Section 9.5 Abandonment In-place

9.5.1 An aboveground storage tank system shall not be abandoned in-place.

9.5.2(1) In accordance with Articles 4.2.7 and 5.5.2, an underground storage tank system installed after the effective date of the Code shall not be abandoned in-place.

9.5.2(2) Subject to Sentence 9.5.3(1), and Article 9.5.4, an existing underground storage tank system shall not be abandoned in-place.

9.5.3(1) An owner of an existing underground storage tank system may apply to the authority having jurisdiction for approval to abandon a storage tank system in-place by:
 (a) describing fully in the application, the circumstances relating to the storage tank system location that would justify abandoning the storage tank system in-place;
 (b) satisfying the authority having jurisdiction that the soil under and around the storage tank system has not been contaminated with a petroleum or allied petroleum product (see Appendix, note B9.5.3(1)); and
 (c) providing confirmation that the owner of the property is aware and in agreement with the plan and procedures to abandon the storage tank system in-place.

9.5.4 When the authority having jurisdiction considers it impractical to remove an underground storage tank system, approval in writing may be granted to the owner to abandon the system in-place (See Appendix B, note B.9.5.4).

9.5.5(1) When the authority having jurisdiction has granted approval in writing to an owner to abandon an underground storage tank system in-place, the abandonment procedures shall ensure that:
 (a) any liquid or sludge in the underground storage tank system is removed and disposed of by an acceptable method;
 (b) the underground storage tank system is purged of vapours to less than 10% of the lower flammable limit and that the presence of vapours is checked with a combustible gas meter;
 (c) sufficient holes are cut along the top of the underground storage tank to enable the complete filling of the storage tank with an inert material acceptable to the authority having jurisdiction (See Appendix B, Note B9.5.5(1));
 (d) the underground storage tank is completely filled with an inert material acceptable to the authority having jurisdiction (See Appendix B, Note B9.5.5(1));
 (e) a record of the size, description, and location of the underground storage tank is;
 (i) permanently appended to the deed of the property;
 (ii) submitted to the authority having jurisdiction; and
 (f) associated piping not abandoned in place is removed from service in conformance with the NFCC.
Section 9.6 Disposal of Storage Tank Systems

9.6.1(1) When a storage tank system is to be disposed of:
(a) liquid petroleum or allied petroleum product shall be removed from the storage tank system;
(b) sludge in the storage tanks shall be removed and disposed of in a manner prescribed by the authority having jurisdiction;
(c) the storage tank shall be purged of vapours to less than 10% of the lower flammable limit and the presence of vapours shall be checked with a combustible gas meter;
(d) sufficient openings shall be cut in the storage tank to render it unfit for further use;
(e) the storage tank shall be transported in conformance with the Transportation of Dangerous Goods Act and in a manner prescribed by the authority having jurisdiction to an approved disposal facility; and
(f) an affidavit of destruction shall be provided by the approved disposal facility and shall be forwarded by the owner or by an authorized company or individual to the authority having jurisdiction.

9.7.2(2) A shop-fabricated aboveground storage tank may be reused for the storage of petroleum or allied petroleum products:
(a) for a vertical aboveground storage tank, after being refurbished in accordance with ULC-S630(A)-2001, “Shop Refurbishing of Aboveground Vertical Shop Fabricated Steel Tanks”; or
(b) for a horizontal aboveground storage tank, after being refurbished in accordance with ULC-S601(A)-2001, “Shop Refurbishing of Aboveground Horizontal Shop Fabricated Steel Tanks”; or
(c) after being inspected and relabeled in accordance with the Special Acceptance Program of Underwriters Laboratories of Canada.

9.7.3 A field-erected aboveground storage tank may only be reused for the storage of petroleum or allied petroleum products after being refurbished in accordance with API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction.”

Section 9.7 Reuse of Storage Tanks

9.7.1(1) A cathodically protected steel underground storage tank may be reused for the storage of petroleum or allied petroleum products after being:
(a) refurbished in accordance with ULC-S603(A)-2001, “Refurbishing of Underground Steel Tanks”; or
(b) inspected and relabeled in accordance with the Special Acceptance Program of Underwriters Laboratories of Canada.

9.7.2(1) A fibreglass-reinforced plastic underground storage tank may be reused for the storage of petroleum or allied petroleum products after being:
(a) refurbished in accordance with ULC-S615(A)-1987, “Refurbishing of Reinforced Plastic Underground Tanks”; or
(b) inspected and relabeled in accordance with the Special Acceptance Program of Underwriters Laboratories of Canada.

9.7.4 An underground storage tank removed from service shall not be reused as an aboveground storage tank.
Environmental Code of Practice for Aboveground and Underground Storage Tank Systems Containing Petroleum and Allied Petroleum Products PN 1326

APPENDIX A Authorities Having Jurisdiction (Revised October 2015)

Federal Government

ENVIRONMENT CANADA
Waste Reduction Management Division
Public and Resources Sector Directorate
Environmental Stewardship Branch
Place Vincent Massey
Gatineau, QC K1A 0H3
Phone: 1-844-672-8038
Fax: 819-938-4454

Provincial and Territorial Authorities

ALBERTA
Office of the Chief Fire Administrator
Safety Services - Public Safety Division
Alberta Municipal Affairs
16th Floor Commerce Place
10155 - 102 Street
Edmonton, AB T5J 4L4
Phone: 1-866-421-6929
Fax: 780-427-8686

Petroleum Tank Management Association of Alberta
980, 10303 Jasper Avenue
Edmonton, AB T5J 3N4
Phone: 780-425-8265
Fax: 780-425-4722

BRITISH COLUMBIA
Ministry of Environment
Environmental Standards Branch
PO Box 9341 Stn Prov Govt
Victoria, BC V8W 9M1
Phone: 250-387-9950
Fax: 250-381-9921

Office of the Fire Commissioner
Ministry of Public Safety and Solicitor General
PO Box 9201 Stn Prov Govt
Victoria, BC V8W 9J1
Phone: 250-952-4913
Fax: 250-356-7197

MANITOBA
Manitoba Conservation and Water Stewardship
1007 Century Street
Winnipeg, MB R3H 0W4
Phone: 204-945-2458 or 204-4708315
Fax: 204-948-2338

NEW BRUNSWICK
Environmental Management Division
Department of the Environment and Local Government
P.O. Box 6000
20 McGloin St.
Fredericton, NB E3B 5H1
Phone: 506-453-7945
Fax: 506-453-2390

NEWFOUNDLAND AND LABRADOR
Pollution Prevention Division
Department of Environment
P.O. Box 8700
St. John's, NL A1B 4J6
Phone: 709-729-2561
Fax: 709-729-6969
NOVA SCOTIA
Nova Scotia Environment
Industrial Management Unit
Sustainability & Applied Science Division
Barring Tower, Suite 1800
P.O. Box 442
Halifax, NS B3J 2P8
Phone: 902-424-2534
Fax: 902-424-0503

NORTHWEST TERRITORIES
Office of the Fire Marshal
Department of Municipal and Community Affairs
Government of the Northwest Territories
600 – 5201 50 Avenue
Yellowknife, NT X1A 3S9
Phone: 867-873-7469
Fax: 867-873-0622

NUNAVUT
Fire Marshal
Community and Government Services
Government of Nunavut
P.O. Box 1000, Station 700
Iqaluit, NU X0A 0H0
Phone: 867-975-5310
Fax: 867-979-4221

ONTARIO
Technical Standards & Safety Authority
Fuels Safety Program
Clarica Centre, West Tower
14th Floor 3300 Bloor Street West
Toronto, ON M8X 2X4
Phone: 416-734-3300
Fax: 416-231-1626

PRINCE EDWARD ISLAND
Department of Communities, land and Environment
31 Gordon Drive
P.O. Box 2000
Charlottetown, PE C1A 7N8
Phone: 902-368-5280
Fax: 902-368-5526

QUÉBEC
Réglementation en équipements pétroliers
Régie du bâtiment du Québec
Direction de la réglementation et du soutien technique
800, place D’Youville, 15e étage
Québec QC G1R 5S3
Téléphone: 418-643-9896
Télécopieur: 418-646-9280
Courriel: pierre.gauthier@rbq.gouv.qc.ca
Site internet: www.rbq.gouv.qc.ca

SASKATCHEWAN
Saskatchewan Environment
Environmental Protection Branch
102-112 Research Drive
Saskatoon, SK S7K 2H6
Phone: 306-933-7940
Fax: 306-933-8442

Corrections and Public Safety
Office of the Fire Commissioner
310-1855 Victoria Avenue
Regina, SK S4P 3T2
Phone: 306-787-3774
Fax: 306-787-7107

YUKON
Community Services
Protective Services Branch.
P.O. Box 2703 (C-20)
Whitehorse, YT Y1A 2C6
Phone 867-667 5217 or 5230
Fax 867-393 6249

Environmental Code of Practice for Aboveground and Underground Storage Tanks systems Containing Petroleum and Allied Petroleum Products (Revised October 2015)
Appendix B Explanatory Material

B.1.4.2 *Allied petroleum product* - It is understood that a number of chemicals not included in this definition may be stored in *underground storage tanks*. This definition, however, represents *combustible and flammable* products that are directly petroleum-based and are the most widely used *petroleum products* in the manufacturing sector.

B.1.4.2 *Interstitial space* includes the following space:

(a) outside the *storage tank* bottom and above a synthetic membrane *liner* or prepared soil layer;
(b) between the *storage tank* bottom and a secondary bottom creating a *leak-containment space*;
(c) between two pipes of a double-wall *piping* system;
(d) between a pipe and a synthetic membrane *liner*; or
(e) space between a *storage tank* and a *secondary containment system*.

B.1.4.2 *Used oil* - The definition of *used oil* was taken from the 1989 CCME publication, PN 1042, “Code of Practice for Used Oil Management in Canada” with the following modifications.

(a) the category of “metal-working fluids” has been removed as this product class is considered to be sufficiently different from the definition of *petroleum products*. Since metal-working fluids may include a substantial amount of water, further consideration would have to be given to the need to line steel tanks.
(b) the category of “insulating fluids or coolant” has been modified for similar reasons, and now reads as “insulating oils”.

Used oil contains primarily hydrocarbons; however, it may also contain additives (e.g., a total of 14% by volume of detergents and viscosity-improvers in lubricating oils for gasoline engines). It contains physical and chemical impurities (e.g., solids, metals, and chlorinated organics) due to physical contamination and chemical reactions occurring during its use. Contamination of *used oil* may also occur from mixing with other oily fluids or fluid wastes when it is collected for recycling.

This Code does not treat *used oil* exclusively as a hazardous waste. *Used oil* may or may not be designated as a hazardous waste depending on the types and amounts of chemical impurities it contains. For example, *used oil* containing 50 ppm or more of PCBs is designated as a hazardous waste in most Canadian jurisdictions. If the *used oil* is designated as a hazardous waste, other requirements for its storage may apply. Consult the *authority having jurisdiction*.

B.3.2.6 The CCME “Guideline for Controlling Emissions of Volatile Organic Compounds from Aboveground Storage Tanks” applies to *storage tanks* having a capacity of more than 4 000 L, designed to contain a *petroleum product* that has a vapour pressure of 10 kPa or greater. The published document is available from Manitoba Statutory Publications.

B.3.3.1(1)
(e)(ii) The overfill alarm system required shall be in addition to the alarm or gauging system that is routinely used. This system shall be used as a back-up system when the primary means of detecting a high level has failed.

B.3.5.1 (2) It is important to note that the requirements of the fire authorities must be met if any *used oil* collection tank is considered for use indoors.
B.3.8.1(1) The use of certain secondary containment techniques may preclude the use of cathodic protection and in some cases cause accelerated corrosion of the storage tank bottom. A corrosion expert shall be consulted.

B.3.9.2(2)(a) The authority having jurisdiction may specify an acceptable material for a secondary containment impermeable barrier based on local conditions or previous experience. Regardless of material, proper installation and ongoing maintenance of a secondary containment impermeable barrier is important.

B.3.9.3(1) The installer shall advise the electrical contractor that synthetic membrane liners have been used and ensure that the liner is not punctured by grounding rods. It is recommended that grounding rods not be inserted within the dyked areas where a synthetic membrane or clay liner has been used for secondary containment. If penetrations are required, locating the penetrations at a high point reduces the likelihood of leaks.

B.4.2.7 Abandonment in-place of an out-of-service storage tank is not normally an acceptable practice. Storage tanks shall not be located near or under building foundations or in locations where the ultimate removal of the storage tank would be impractical.

B.4.5.3(1)(b) Stray current from an impressed current system can cause corrosion to storage tank systems that are cathodically protected by sacrificial anodes.

B.4.5.3(2) The anodes on a cathodically protected storage tank that conforms with CAN/ULC-S603.1, “Standard for Galvanic Corrosion Protection Systems for Steel Underground Tanks”, are designed to protect the tank only. Inadequate corrosion protection of such cathodically protected storage tanks can occur if the storage tank is not electrically isolated from the piping or other storage tanks.

B.4.5. Rectifier shall have a non-resettable 115V. AC elapsed time indicator with 99,999 hour capacity. A battery powered downtime counter of the same hour capacity is an optional alternative.

B.5.2.5 Mechanical joints, such as flanged joints or couplers, shall not be used below ground. Additionally, it is good practice to minimize the use of threaded joints below ground.

B.6.2.6 CITLDS method combines use of an Automatic Tank Gauge probe to collect data and sophisticated data analysis used in Statistical Inventory Reconciliation (SIR) techniques. An underground storage tank is monitored continuously without interfering with normal tank operations. These systems are designed to meet the monthly monitoring performance standard of detecting a leak of 0.76 L/hr or 567 L per month with 95% probability and 5% false alarm.

B.6.2.11(1)(h) The determination of an appropriate procedure for a leak detection test of piping with a volume greater than 1000 L is based on several variables, including the ability to drain and isolate the line, line volume, product characteristics, the availability of test equipment, and the reliability of procedures to detect leaks. The best results will be generated when the product is drained from the line, the line is blinded or isolated at each end, and the line is pressurized with an inert gas. The length of time that the line is pressurized should be consistent with its volume. Industry’s best practices should also be taken into consideration. Typically, refineries and terminals will use an inert gas to pressurize a line at one and one half times normal operating pressure and monitor the pressure for four or more hours.
Numerous technologies are available to conduct a precision leak detection test and determine the presence of leaks in a storage tank, associated connections, risers, connected equipment and the vent system. Commonly used methods include vacutech, mass measurement, volumetric, and acoustics. The various test systems have specific preparation requirements, operating procedures, and technical limitations. These requirements have been determined by the equipment manufacturer and are based on the design of the technology. Failure to follow the procedures or operate within these parameters can impact the accuracy of results and scope of the evaluation.

The test equipment has also been designed to evaluate various areas of the storage tank and associated equipment. In some cases, more than one test must be competed in order to evaluate the underfill area (below the fluid level) and the ullage space (above the fluid level). For example, a mass measurement or volumetric test could be used to evaluate the area below the fluid level. An acoustics test would be used in conjunction with the underfill test to evaluate the ullage space, risers and vent system. However, in some cases a test procedure can be used in more than one application. An ullage test could also be used to test an empty tank.

Various factors, including tank type – aboveground, underground, single-wall or double-wall, – interstice space design, and product level, must be considered and will influence the selection of an appropriate test. Underground storage tanks require an evaluation of the primary containment, connections, risers, connected equipment and the vent system. An aboveground storage tank requires an evaluation of the floor or any area of the tank that cannot be visually inspected for leaks. Tank components and leak detection test requirements are outlined in Table 10:

Table 10 - Tank Components and Leak Detection Test Requirements

<table>
<thead>
<tr>
<th>Tank description</th>
<th>Product level</th>
<th>Test type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-wall underground tank</td>
<td>Empty</td>
<td>Ullage test</td>
</tr>
<tr>
<td>Single-wall underground tank</td>
<td>With product</td>
<td>Complete tank test</td>
</tr>
<tr>
<td>Double-wall underground tank</td>
<td>Empty</td>
<td>Ullage test</td>
</tr>
<tr>
<td>Double-wall underground tank</td>
<td>With product</td>
<td>Ullage test and LPVLDT on the interstice; or complete tank test</td>
</tr>
<tr>
<td>Double-wall underground tank with brine or vacuum interstice monitor</td>
<td>Empty</td>
<td>Ullage test</td>
</tr>
<tr>
<td>Double-wall underground tank with brine or vacuum interstice monitor</td>
<td>With product</td>
<td>Ullage test; or complete tank test</td>
</tr>
<tr>
<td>Single-wall aboveground tank</td>
<td>With product</td>
<td>Underfill test</td>
</tr>
<tr>
<td>Double-wall aboveground tank</td>
<td>Empty</td>
<td>Ullage test</td>
</tr>
<tr>
<td>Double-wall aboveground tank</td>
<td>With product</td>
<td>Underfill test and LPVLDT on the interstice</td>
</tr>
<tr>
<td>Double-wall aboveground tank</td>
<td>With product</td>
<td>Underfill and LPVLDT on the interstice</td>
</tr>
</tbody>
</table>
B.6.3.1
(2) When the leak detection device is not an electrical device (such as a monitoring well or statistical inventory reconciliation), electrical interlocks may not be possible.

B.6.3.2
Even with the present mechanical type of line-leak detectors, a line leak within a submersible pump system can result in large volumes of product being pumped into the ground. Leaks from submersible pump systems have been the cause of some of the largest environmental and safety incidents. Where line-leak detectors are used, they shall not be bypassed when problems are encountered while dispensing the product.

The authority having jurisdiction may choose to prohibit the use of remote or submersible pump systems unless the pipes and pumps are within an acceptable secondary containment system.

B.6.5.3
The soil shall consist of gravels, coarse or medium sands, coarse silts, or other permeable material.

B.6.5.8
A filter pack is a porous medium usually consisting of sand or pea gravel.

B.6.5.13
Monitoring wells shall not be constructed of Schedule 20 PVC “sewer” or leach field piping.

B.6.7.2
(1) A mechanical line leak detector (MMLD) is unable to reliably detect small leaks. From the effective date of this Code and at the discretion of the authority having jurisdiction, an MMLD is not recognized as a method of detecting leaks in pressurized piping. Additional methods of leak detection may be used, or alternatively, the MLLD can be replaced by an electronic line leak detector (ELLD).

Inventory control for a storage tank is a form of inventory monitoring for motive fuel storage tanks. However, inventory control by itself is not an acceptable form of leak detection.

An under-pump check valve is located directly below the pump of a suction system and is the only check valve installed on the system. With continuous slope back to the tank, a leak in the pipe will cause product to drain into the tank.

B.7.3.4
(2)(b) Allows a field-erected storage tank to simply follow the requirements of API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction.” Strict adherence to API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction.” is required. API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction.” requires periodic corrosion monitoring. Once a corrosion rate is established, subsequent corrosion monitoring and repairs to the tank bottom can be performed prior to the occurrence of any perforations. If perforations do occur, it can be assumed that the provisions of API Std 653-01, “Tank Inspection, Repair, Alteration, and Reconstruction.” have not been strictly followed. If this occurs, stronger preventive steps are specified.

B.8.3.2
(1)(a) To facilitate early detection of leakage from an underground storage tank system, proper inventory records must be developed, maintained, and reviewed continuously for any developing trends that may signify a loss of product. The traditional method of doing this has been to “dip” the storage tanks. Dipping is the actual measurement of the liquid contents of the storage tank with a graduated stick (dip stick). This measurement combined with the storage tank chart (suitable for use with the specific tank) can be converted to the liquid volume of the storage tank. A measuring device (generally a recording type of pump) that will measure the amount of product
withdrawn from the storage tank is also an integral part of the inventory control system. Finally, it is necessary to reconcile the product in storage with the amount recorded (daily/weekly) as having been withdrawn. Any continuous discrepancy (shortage) must be investigated as a possible leak from the underground storage tank system.

B.8.4.1
(2)(b) Frequent visual inspections of an aboveground storage tank system is required to provide early detection of equipment failures and product spills. The authority having jurisdiction may decide that operators of tanks of 5000 L and less capacity do not have to do daily checks. In addition, it may not be possible or practical to inspect a tank at unattended remote sites.

B.8.5.2
(1)(b) The NFCC requires that a vehicle operator remain in close proximity to the discharge control valve. There is concern that a vehicle operator may interpret ‘close proximity’ to include sitting in the cab of the tank vehicle, out of sight of the delivery point. Many overfills occur because the tank vehicle operator is not observing the filling operation and is unaware that the storage tank is overfilling. Therefore Sentence 8.5.2(1)(b) is more specific and requires a vehicle operator to be more attentive.

B.8.5.3
(2) A significant number of the spills that occur at aboveground storage tank facilities result from improper procedures during routine activities. These accidents can be reduced or eliminated if operating personnel are properly trained about correct safety procedures and the importance of following them to prevent injury and environmental incidents. Training must be periodically followed up to ensure that proper procedures are being followed.

B.8.6.1
(1) Cathodically protected potentials are required on all parts of the tank bottom in order for it to be considered to be cathodically protected. When a perimeter anode type cathodic protection system is used, the potential at the tank centre can be much different than that measured at the tank perimeter and a corrosion expert should be consulted.

B.8.7 The CPPI “Code of Practice for Management of Water Effluent Quality at Petroleum Storage and Distribution Facilities” may be useful for anyone who owns or operates an oil-water separator.

An oil-water separator does not remove the soluble fraction of oil that is in the water or storm runoff. Therefore, it shall be noted that even if an oil-water separator produces an effluent that has an oil and grease or hydrocarbon content that is below provincial or territorial discharge limits, the effluent may still be acutely toxic to fish.

It is recommended that the designer shall ensure that when an oil-water separator is to be installed that a proper design basis is used. The owner shall control sources to the separator and remove the free oil layer and accumulated separated solids as required by the manufacturer’s operating instructions.

B.8.7.5 Detergents and cleaning solutions cause oil to emulsify in water and prevent effective separation. Never wash trucks with such products in areas that drain to an oil-water separator.

B.8.8.3 At the time of a change of ownership, an environmental assessment or investigation of site contamination shall be conducted on real property on which storage tanks are located.
B.8.12.1
(1) The tank bottom water from the bottom of a storage tank normally contains water, insoluble hydrocarbon, and dissolved hydrocarbons. The concentration of dissolved or soluble hydrocarbons is often sufficiently high that the tank bottom water would be considered toxic if a biological toxicity test were conducted. Since oil-water separators, such as an API separator, only separate insoluble oil from water, the tank bottom water shall be segregated in a holding tank and sent to a wastewater treatment facility either on-site or off-site (and not directly to an oil-water separator).

B.9.3.1 Corrosion is the major factor which limits the life of a steel storage tank system and corrosion can be controlled for an indefinite period of time if corrosion protection is maintained. When cathodic protection system is used it is only effective when the system is “on”. Therefore, the cathodic protection system must be maintained and operated continuously.

B.9.5.3
(1) The authority having jurisdiction could consider any of the following as reasonable conditions for allowing the owner to abandon a storage tank in place:
(a) located in whole or in part beneath a permanent building or other facility so that excavation of the storage tank is not practicable;
(b) so large or of a type of construction that the excavation of the storage tank is not practicable;
(c) inaccessible to the heavy equipment necessary for removal of the storage tank; or
(d) situated so that removal of the storage tank would endanger the structural integrity of nearby buildings or other facilities.

B.9.5.5
(1) Sand, gravel, or concrete are examples of what is considered acceptable inert material. Foam shall not be considered an acceptable inert material.

B.9.5.4 A precision leak detection test conducted in conformance with Section 8.10, or borehole sampling of the soil may be required to satisfy the authority having jurisdiction that the soil under and around the storage tank has not been contaminated by a petroleum product or allied petroleum product.
APPENDIX C Minimum Information Required for Registration of Storage Tank Systems

The registration form prescribed by the authority having jurisdiction shall require, as a minimum, the following information:

(a) name of owner;
(b) address of owner;
(c) type of facility;
(d) location of storage tanks (if different than address of owner);
(e) storage capacity of tank;
(f) type of product stored;
(g) year of installation;
(h) ULC standard of tank
(i) type of storage tank material;
(j) type of piping material;
(k) corrosion protection provided (if applicable);
(l) type of pump;
(m) type of leak detection;
(n) type of secondary containment (if applicable);
(o) name of operator (if different than storage tank owner);
(p) name of land owner (if different than storage tank owner);
(q) name of installer; and
(r) manufacturer of storage tank.
APPENDIX D Spill Reporting

The owner or operator of a storage tank system who discovers, suspects, or is notified by any person of a leak or possible leak shall immediately notify the authority having jurisdiction by telephone and provide the information requested by the authority having jurisdiction.

Listed below are the emergency phone numbers of the federal, provincial, and territorial authorities. Either of the two listed numbers can be called.

<table>
<thead>
<tr>
<th>PROVINCE / TERRITORY</th>
<th>FEDERAL AUTHORITY</th>
<th>PROVINCIAL / TERRITORIAL AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newfoundland and Labrador</td>
<td>1-800-563-2444 709-772-2083 Coast Guard</td>
<td>1-800-563-2444 709-772-2083 Coast Guard</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>1-800-565-1633 Coast Guard (in Maritimes only)</td>
<td>1-800-565-1633 Coast Guard (in Maritimes only)</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>1-800-565-1633 Coast Guard (in Maritimes only)</td>
<td>1-800-565-1633 Coast Guard (in Maritimes only)</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>1-800-565-1633 Coast Guard (in Maritimes only)</td>
<td>1-800-565-1633 Coast Guard (in Maritimes only)</td>
</tr>
<tr>
<td>Ontario</td>
<td>613-238-4666 Environment Canada Environmental Emergencies 1-800-268-6060 Ministry of the Environment Spills Action Centre</td>
<td>1-800-268-6060 Ministry of the Environment Spills Action Centre</td>
</tr>
<tr>
<td>Manitoba</td>
<td>204-468-8020 Environment Canada Environmental Emergencies 204-944-4888 Manitoba Conservation Environmental Emergency Line</td>
<td>204-468-8020 Environment Canada Environmental Emergencies 204-944-4888 Manitoba Conservation Environmental Emergency Line</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>604-663-2825 Environment Canada Environmental Emergencies 1-800-663-3456 Spill Report Centre Saskatchewan Environment</td>
<td>604-663-2825 Environment Canada Environmental Emergencies 1-800-663-3456 Spill Report Centre Saskatchewan Environment</td>
</tr>
<tr>
<td>Alberta</td>
<td>1-800-499-2432 Environment Canada Spill Reporting 1-800-222-6514 Alberta Environment and Local Fire Department</td>
<td>1-800-499-2432 Environment Canada Spill Reporting 1-800-222-6514 Alberta Environment and Local Fire Department</td>
</tr>
<tr>
<td>British Columbia</td>
<td>604-666-6100 Environment Canada Environmental Emergencies 604-666-6011 Canada Coast Guard 1-800-663-3456 Provincial Emergency Program</td>
<td>604-666-6100 Environment Canada Environmental Emergencies 604-666-6011 Canada Coast Guard 1-800-663-3456 Provincial Emergency Program</td>
</tr>
<tr>
<td>Yukon</td>
<td>403-667-7244 Environmental Protection Services 403-667-7244 Environmental Protection Services</td>
<td>403-667-7244 Environmental Protection Services 403-667-7244 Environmental Protection Services</td>
</tr>
</tbody>
</table>