CODE D’USAGE ENVIRONNEMENTAL
POUR LA MESURE ET
LA RÉDUCTION DES ÉMISSIONS
FUGITIVES DE COV
RÉSULTANT DE FUITES PROVENANT
DU MATÉRIEL

OCTOBRE 1993
CCME-EPC-73F
Le Conseil canadien des ministres de l'environnement (CCME) est la principale tribune intergouvernementale au Canada qui permet la discussion et la mise en œuvre d'initiatives conjointes sur des questions environnementales d'envergure nationale, internationale et mondiale. Les 13 gouvernements membres collaborent à l'élaboration de normes, de pratiques et de lois environnementales uniformes à l'échelle du pays.

Secrétariat du Conseil canadien des ministres de l'environnement
326, rue Broadway, pièce 400
Winnipeg (Manitoba)
R3C 0S5
 Téléphone : (204) 948-2090
 Télécopieur : (204) 948-2125

Préparé par le Comité de travail sur la mesure et la réduction des émissions fugitives de COV résultant de fuites provenant du matériel

This document is also published in English.
Code d’usage environnemental pour la mesure et la réduction des émissions fugitives de COV résultant de fuites provenant du matériel

Résumé

Le Code d’usage environnemental pour la mesure et la réduction des émissions fugitives de COV résultant de fuites provenant d’appareils, a été préparé dans le cadre du Plan de gestion pour les oxydes d’azote (NOₓ) et les composés organiques volatils (COV). Le Code a été élaboré à l’intention des raffineries de pétrole et des usines de produits chimiques organiques. Il peut trouver des applications dans d’autres industries produisant ou utilisant des courants gazeux de COV. Dans le présent document, on aborde des questions environnementales relatives à la mesure et à la réduction des émissions de COV résultant de fuites provenant du matériel utilisé dans des usines. On y a inclus les méthodes de mise en pratique des procédés, d’étude de la performance, d’essais de conformité, de documentation et de mesure des émissions. Ces méthodes ont pour but de réduire la proportion des émissions fugitives de COV résultant de fuites provenant d’appareils. Le Code a été préparé par un comité de travail multilatéral comprenant le gouvernement fédéral, les gouvernements provinciaux et des groupes d’industriels et d’écologistes.
Table des matières

<table>
<thead>
<tr>
<th>Glossaire</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abréviations</td>
<td>v</td>
</tr>
<tr>
<td>Unités de mesure</td>
<td>vi</td>
</tr>
<tr>
<td>Préface</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>viii</td>
</tr>
<tr>
<td>Partie 1</td>
<td>x</td>
</tr>
<tr>
<td>Description des méthodes de réduction des émissions fugitives de COV</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Sources d'émissions fugitives de COV</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Sources non incluses</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Principes de la réduction des émissions fugitives</td>
<td>2</td>
</tr>
<tr>
<td>Partie 2</td>
<td>3</td>
</tr>
<tr>
<td>Critères d'application</td>
<td></td>
</tr>
<tr>
<td>2.1 Généralités</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Exemptions</td>
<td>3</td>
</tr>
<tr>
<td>Partie 3</td>
<td>4</td>
</tr>
<tr>
<td>Lignes directrices relatives à la performance</td>
<td></td>
</tr>
<tr>
<td>3.1 Généralités</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Définition de fuite</td>
<td>4</td>
</tr>
<tr>
<td>3.3 Détection des fuites et réparation du matériel</td>
<td>4</td>
</tr>
<tr>
<td>3.4 Réparations et entretien</td>
<td>4</td>
</tr>
<tr>
<td>Partie 4</td>
<td>5</td>
</tr>
<tr>
<td>Méthodes</td>
<td></td>
</tr>
<tr>
<td>4.1 Généralités</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Inventaire du matériel</td>
<td>5</td>
</tr>
<tr>
<td>4.3 Facteurs d'émission</td>
<td>6</td>
</tr>
<tr>
<td>4.4 Établissement de l'inventaire des émissions</td>
<td>6</td>
</tr>
<tr>
<td>Partie 5</td>
<td>7</td>
</tr>
<tr>
<td>Conformité</td>
<td></td>
</tr>
<tr>
<td>5.1 Généralités</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Conformité</td>
<td>7</td>
</tr>
<tr>
<td>5.3 Non-conformité</td>
<td>7</td>
</tr>
<tr>
<td>5.4 Autres détails sur la conformité</td>
<td>7</td>
</tr>
<tr>
<td>Partie 6</td>
<td>8</td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
</tr>
<tr>
<td>6.1 Généralités</td>
<td>8</td>
</tr>
<tr>
<td>6.2 Objectifs de la documentation</td>
<td>8</td>
</tr>
<tr>
<td>6.3 Gestion des données</td>
<td>8</td>
</tr>
<tr>
<td>Partie 7</td>
<td>8</td>
</tr>
<tr>
<td>Établissement de rapports</td>
<td></td>
</tr>
<tr>
<td>7.1 Généralités</td>
<td>8</td>
</tr>
<tr>
<td>Partie 8</td>
<td>9</td>
</tr>
<tr>
<td>Recommandations</td>
<td></td>
</tr>
<tr>
<td>8.1 Généralités</td>
<td>9</td>
</tr>
<tr>
<td>8.2 Qualité de l'entretien</td>
<td>9</td>
</tr>
<tr>
<td>8.3 Planification à long terme</td>
<td>9</td>
</tr>
<tr>
<td>8.4 Modes d'exploitation</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendices

Appendice A Liste des membres du Comité de travail 12
Appendice B Codes industriels canadiens applicables aux raffineries de pétrole et aux usines de produits chimiques organiques 14
Appendice C Exigences en matière de performance 17
Appendice D Facteurs d'émission – Origine et application 19
Appendice E Variables de la détection des fuites 24
Appendice F Protocole des mesures 27
Appendice G Guide des normes relatives au matériel 28
Appendice H Programmes d'amélioration de la qualité 32
Appendice I Expérience acquise par les États-Unis 34
Appendice J Explication des limites des mesures 37
Appendice K Enregistrement des données et établissement de rapports 37
Appendice L Exemples d'évaluation statistique 46
Appendice M Bibliographie 47

Tableaux

Tableau D-1 Comparaison de la fréquence des fuites provenant d'éléments et de pièces d'importance critique, avec les chiffres fournis par l'étude originale de l'EPA 20
Tableau D-2 Sources d'émissions fugitives et facteurs d'émission pour les usines de produits chimiques organiques et les raffineries de pétrole 21
Tableau E-1 Caractéristiques des appareils de contrôle et de surveillance 26
Tableau I-1 Réglementation du Texas telle qu'appliquée aux émissions de COV 35
Tableau K-1 Émissions fugitives de COV – Rapport sommaire 38
Tableau K-2 Émissions fugitives de COV – Feuille de rapport sommaire sur la surveillance des pièces et des éléments 39
Tableau K-3 Émissions fugitives de COV – Feuille d'estimation des émissions – Soupapes 40
Tableau K-4 Émissions fugitives de COV – Feuille d'estimation des émissions – Garnitures d'étanchéité de pompe 41
Tableau K-5 Émissions fugitives de COV – Feuille d'estimation des émissions – Garnitures d'étanchéité pour compresseurs 42
Tableau K-6 Émissions fugitives de COV – Feuille d'estimation des émissions – Soupapes de surpression 43
Tableau K-7 Émissions fugitives de COV – Feuille d'estimation des émissions – Brides 44
Tableau K-8 Émissions fugitives de COV – Feuille d'estimation des émissions – Conduites ouvertes 45
Glossaire

Les termes et expressions employés dans le présent document ont la signification suivante, sauf si le contexte indique un autre sens.

Appareil de contrôle – Analyseur portable d'hydrocarbures, qui satisfait aux normes de performance établies dans la méthode 21 de l'Environmental Protection Agency (États-Unis).

Circuit de traitement – Tout le matériel et tous les éléments et pièces utilisés pour traiter, purifier, transporter ou acheminer des circuits de COV jusqu'aux points de stockage.

Composés organiques volatils (COV) – Tout composé organique participant à des réactions photochimiques dans l'atmosphère, c'est-à-dire tout composé organique autre que les suivants, exclus en raison de leur activité photochimique négligeable : méthane, éthane, 1,1,1-trichloréthane, chlorure de méthylène, chlorofluorocarburdes (CFC), fluorocarburdes (FCs), hydrochlorofluorocarburdes (HCFC).

Concentration détectée – Valeur, lue par l'instrument correctement établonné, d'un taux de COV généralement exprimé en parties par million en volume (ppmv).

Débit massique d'émission – Quantité de COV émise dans l'atmosphère à partir du point d'origine de la fuite ; c'est la masse totale de COV libérée par unité de temps.

Détection ou dépistage – Mesure, par un instrument de mesure, de la concentration des hydrocarbures qu'émet une pièce ou un élément.

Dispositif de contrôle – Appareil de combustion fermé ou système de récupération des vapeurs ou tout autre dispositif employé pour réduire les émissions gazeuses dans l'environnement.

Emballage – Mise sous emballage d'une pièce d'appareil pour mesurer son débit de fuite.

Émissions fugitives – Émissions ou fuites de COV provenant du matériel.

Facteur d'émission – Débit massique d'émission par pièce ou élément, applicable aux populations de sources (soupapes, brides, etc.), tel que déterminé par la moyenne des mesures in situ faites sur plusieurs pièces ou éléments semblables. On l'emploie pour caractériser les émissions produites par une pièce ou un élément donnés.

Facteur d'émission non accompagnée de fuites – Débit massique d'émission à partir de chaque pièce ou élément, caractérisant les sources de fuites où les concentrations relevées par dépistage sont inférieures à la valeur définissant une fuite.

Facteur d'émission par fuites – Débit massique d'émission à partir de chaque pièce ou élément associés à la population de sources (p. ex. : soupapes), les concentrations relevées par dépistage étant égales ou supérieures à la valeur définissant une fuite.

Facteur de réponse –

\[FR = \frac{\text{Concentration réelle d'un composé}}{\text{Concentration observée par l'appareil de détection}} \]

Fonctionnement avec gaz ou vapeur – Matériel utilisé, contenant un fluide de traitement qui se trouve à l'état gazeux pendant le déroulement du procédé.

Fonctionnement avec liquide dense – Matériel utilisé, employant des hydrocarbures dont la pression de vapeur est de moins de 1,013 kPa (0,147 psia) à 20°C.
Fonctionnement avec liquide léger – Matériel employé, contenant un hydrocarbure liquide léger dont la pression de vapeur est supérieure à 1,013 kPa (0,147 psia) à 20°C.

Fonctionnement sous vide – Matériel fonctionnant à une pression interne d'au moins 5 kPa au-dessous de la pression ambiante.

Fréquence des fuites – Pourcentage de pièces ou d'éléments sujets à des fuites par rapport à la population totale de pièces semblables.

Fuite – Concentration de COV telle que déterminée par un appareil de contrôle et à laquelle on décide de prendre des mesures correctives; c'est le niveau auquel une pièce ou un élément sont identifiés comme « sujets à des fuites ».

Pièce ou élément – Pièce ou élément précis du matériau – p. ex. : garniture d'étanchéité de pompe, raccord, soupape, bride, garniture d'étanchéité pour compresseur, etc.

Raccord – Raccords à bride, à vis ou autres raccords jumelés employés pour raccorder deux tuyaux ou un tuyau et une pièce de matériau industriel.

Raffinerie de pétrole – Établissement participant à des activités de fabrication, telles que décrites dans les codes n°5 3611 et 3612 de la Classification type des industries établie par Statistique Canada (voir Appendice B).

Réparé – Matériel qui a été réglé, rectifié ou modifié en vue de l'élimination des fuites.

Soupape ou conduite ouverte – Soupape, sauf soupape de surpression, dont un côté de siège est un contact avec le fluide industriel, et l'autre est exposé à l'atmosphère, soit directement, soit par une conduite ouverte.

Source de fuites – Source dont la concentration relevée par dépistage est supérieure ou égale à la valeur définissant une fuite.

Source d'émission non accompagnée de fuites – Source d'émission où les concentrations relevées par dépistage dépassent de 8 ppmv les valeurs de fond, mais sont inférieures aux valeurs définissant une fuite.

Source inaccessible – Matériel qui, à des fins de contrôle et de surveillance, se trouve à plus de 2 mètres au-dessus d'une surface d'appui permanente. Matériel dont l'observation est dangereuse, parce qu'elle pourrait exposer le personnel chargé du contrôle et de la surveillance des appareils à des périls imminents résultant de conditions de température, de conditions de pression ou de conditions dans lesquelles le traitement industriel peut provoquer une explosion. Une source peut aussi être inaccessible parce qu'elle est protégée par un matériau couvrant ou pourvue d'une isolation.

Source non émettrice – Source dont le débit d'émission relevé par dépistage est de 8 ppmv.

Spéciation – Identification de chacune des espèces chimiques dans une émission de COV.

Temps de réponse – Durée écoulée après un palier de variation de la concentration de COV, au point d'introduction dans le système d'échantillonnage, jusqu'au moment où est atteinte 90 p. 100 de la valeur finale correspondante, telle que visualisée à l'écran d'affichage des résultats de l'analysateur.

Usine de produits chimiques organiques – Usine de fabrication telle que décrite dans les codes n°5 3712 et 3731 de la Classification type des industries établie par Statistique Canada (voir Appendice B).

vi
Abréviations

ACFPC Association canadienne des fabricants de produits chimiques
AVO Analyseur de vapeurs organiques
BACTEA Meilleure technologie antipollution actuellement disponible et économiquement rentable (Best Available Control Technology Economically Achievable)
CAA Clean Air Act
CCME Conseil canadien des ministres de l'environnement
CMA Chemical Manufacturers Association (États-Unis)
COV Composé organique volatile
CTI Classification type des industries
CWQ Corridor Windsor-Québec
DCC Détecteur à combustion catalytique ou à conductivité thermique
DFRM Détection des fuites et réparation du matériel
DIF Détecteur à ionisation de flamme
DPI Détecteur à photo-ionisation
DSANDI Détecteur par spectrométrie d'absorption non dispersive dans l'infrarouge
EFV Émissions fugitives de COV
ENGO Organisme environnemental non gouvernemental
EPA Environmental Protection Agency (États-Unis)
GTQ Gestion totale de la qualité
ICPP Institut canadien des produits pétroliers
IFPCOS Industrie de fabrication de produits chimiques organiques synthétiques
MACT Maximum Achievable Control Technology
NAAQS National Ambient Air Quality Standards
NESHAP National Emission Standards for Hazardous Air Pollutants
NOx Oxydes d'azote
NSPS New Source Performance Standards
PAD Polluants atmosphériques dangereux
PADV Polluants atmosphériques dangereux volatils
PAQ Programme d'amélioration de la qualité
SIP State Implementation Plans
SRA Sud de la région atlantique
TACB Texas Air Control Board
TRI Toxic Release Inventory
VIF Vallée inférieure du Fraser (Colombie-Britannique)

Unités de mesure

°C degrés Celsius
kg/h kilogramme par heure
kPa kilopascal (unité de pression)
ppb parties par milliard
ppmv parties par million en volume
psia livre par pouce carré (unité de pression)
psig livre par pouce carré, sur l'indicateur
 Préface

En octobre 1988, le Conseil canadien des ministres de l'environnement (CCME) a entrepris la mise sur pied d'un programme de gestion visant à réduire les émissions d’oxydes d’azote (NO\textsubscript{x}) et de composés organiques volatils (COV) dans l'atmosphère. La phase 1 d'un plan en trois phases visant à résoudre les problèmes des concentrations d’ozone au sol en réduisant les précurseurs de l’ozone – les NO\textsubscript{x} et les COV – a été présentée en mai 1991. Trois initiatives élaborées dans le cadre du Plan de gestion NO\textsubscript{x}/COV (désigné ici du nom de « Plan de gestion »), les initiatives V304, V607 et V609, ont pour objectifs l'établissement de l'inventaire des émissions fugitives de COV (EFV) et la mise en œuvre des programmes de réduction des fuites dans les usines de produits chimiques organiques et les raffineries de pétrole d'ici 1993. L'initiative V304 vise les nouvelles usines de produits chimiques organiques, les initiatives V607 et V609 visent respectivement les usines existantes de produits chimiques organiques et les raffineries existantes. Les nouvelles raffineries n'étaient pas visées par ces initiatives, la construction de nouvelles raffineries dans un avenir prévisible n'ayant pas été envisagée à ce moment-là.

Les concentrations d’ozone au niveau du sol dépassent souvent l'objectif maximum admissible au Canada, qui est de 82 ppb pendant l'été en plusieurs endroits. La formation d’ozone au niveau du sol résulte de réactions photochimiques dans l'atmosphère, entre les NO\textsubscript{x} et les COV, sous l'effet de la lumière solaire. Trois régions ont été désignées secteurs de concentrations excessives d’ozone, aux fins d'établissement des cibles provisoires d'émission pour la réalisation de la phase 1 du plan; ce sont la vallée inférieure du Fraser (VIF) en Colombie-Britannique, le corridor Windsor-Québec (CWQ) en Ontario et au Québec, et le secteur de Saint John dans le sud de la région de l'Atlantique (SRA).

Il est possible de réduire la formation d’ozone au niveau du sol en réduisant les émissions de NO\textsubscript{x} et de COV.

Le présent Code ne porte que sur la réduction des EFV. À mesure que se manifesteront d'autres problèmes tels que la lutte contre les polluants atmosphériques dangereux (PAD), les produits atmosphériques toxiques ou la lutte contre les mauvaises odeurs, il faudra peut-être apporter des modifications au Code.

Le Code s'applique aux raffineries de pétrole et aux usines de produits chimiques organiques. Il peut également être appliqué par l'autorité compétente aux installations industrielles produisant ou utilisant des circuits de traitement qui pourraient générer des EFV dues à des fuites provenant du matériel utilisé.

Les émissions fugitives sont celles qui ne proviennent pas d'une cheminée, d'un conduit ou de tout autre espace fermé, et ne sont pas traitées ou limitées avec un matériel précis. Ces fuites provenant du matériel sont définies comme des pertes incontrôlées de fluide industriel à travers le mécanisme isolant séparant ce fluide industriel de l'atmosphère. Les fuites venant du matériel sont parfois caractéristiques du matériel lui-même ou peuvent être le résultat de défectuosités ou d'un mauvais entretien du matériel.

Le Code est fondé sur la performance et servira de ligne directrice en vue de réduire autant que possible les émissions de COV à partir de sources d'émissions fugitives, par des mesures
effectuées avec des instruments, par l'application de lignes directrices relatives à la performance, par l'établissement d'une documentation, et par de meilleurs modes d'exploitation.

Le Code, qui a été publié par le CCME, a été élaboré par un comité de travail multilatéral présidé par Environnement Canada (voir la liste des membres du Comité de travail à l'Appendice A).

Pendant l'établissement du Code, le Comité de travail a bénéficié des contributions de l'Environmental Protection Agency (EPA) des États-Unis et du Texas Air Control Board (TACB), qui ont eu l'amabilité de nous aider en offrant leur temps et leurs compétences pour interpréter l'expérience des États-Unis quant à la réduction des EFV.

Depuis 1988, l'Association canadienne des fabricants de produits chimiques (ACFPC) et l'Institut canadien des produits pétroliers (ICPP) ont entrepris plusieurs études et réuni des bases de données à l'appui des codes d'usage. L'objectif est que le présent Code permette de converger vers une seule ligne directrice qui soit généralement acceptable pour toutes les industries de l'ensemble du pays. Des alinéas traitant des besoins particuliers de certains secteurs industriels seront inclus à mesure que ces besoins seront définis.

Ce Code est destiné à l'autorité compétente en matière de protection de l'environnement, et doit servir de ligne directrice pour l'élaboration et l'application d'un programme dont le but est d'aider les propriétaires et exploitants d'usines à réduire les EFV.

Nous remercions tous les participants et intervenants qui ont aidé à la mise au point de ce Code.

Les demandes de renseignements et les commentaires relatifs au Code sont les bienvenus et peuvent être adressés à la personne suivante :

Chef, Division des industries chimiques
Direction des programmes industriels
Environnement Canada
Ottawa (Ontario)
K1A 0H3

Téléphone : (819) 997-3640
Télécopieur : (819) 953-5595

On peut obtenir des exemplaires supplémentaires du Code en s'adressant à la personne suivante :

Directeur exécutif
Conseil canadien des ministres de l'environnement
326, rue Broadway, pièce 400
Winnipeg (Manitoba)
R3C 0S5

Téléphone : (204) 948-2090
Télécopieur : (204) 948-2125
Introduction

Le présent Code est prévu pour servir de document de référence au personnel exploitant les usines, aux personnes chargées de la réglementation et au public, en vue de l’application de méthodes cohérentes et uniformes permettant de mesurer, de limiter et de réduire les émissions fugitives de COV résultant de fuites à partir des appareils.

Le Code contient huit parties et il est présenté sous forme de dépliant pour faciliter son utilisation.

Partie 1 Décrit les divers types et sources d’émissions fugitives et précise l’objectif du Code.

Partie 2 Traite des critères d’application concernant la mesure et la réduction des EFV.

Partie 3 Résume les lignes directrices sur la performance associées aux sources de fuites provenant du matériel.

Partie 4 Met en relief les méthodes à appliquer pour que le contrôle et la surveillance sur le terrain ainsi que les données collectées respectent les exigences de l’autorité compétente.

Partie 5 Indique à l’utilisateur les exigences à suivre pour que le programme de contrôle et de surveillance des émissions respecte les lignes directrices sur la performance.

Partie 6 Indique les exigences à suivre en matière de documentation pour que les données soient utiles au propriétaire et à l’autorité compétente.

Partie 7 Contient les recommandations sur la manière de communiquer les résultats du programme à l’autorité compétente.

Partie 8 Formule des recommandations sur les modes d’exploitation appropriés, qui aideront le propriétaire et l’autorité compétente à appliquer les mesures de réduction des EFV de façon simple et efficace.

Appendices

Comprennent les données fondamentales additionnelles, les explications de divers détails, les tableaux de référence, les formulaires d’échantillonnage et les procédures détaillées, qui aideront à interpréter et à appliquer le Code.
Partie 1
Description des méthodes de réduction des émissions fugitives de COV

1.1 Sources d’émissions fugitives de COV

1.1.1 Pièces du circuit de traitement constituant des sources d’émissions fugitives en raison de fuites, notamment :

- les vannes de séparation;
- les soupapes de réglage;
- les garnitures étanches de pompe;
- les garnitures d’étanchéité;
- les soupapes de sûreté;
- les appareils et les joints et raccords à brides des conduites et tuyaux;
- les conduites ouvertes;
- les tubulures d’échantillonnage.

On doit considérer les joints des agitateurs comme des garnitures étanches de pompe présentant les mêmes facteurs d’émission.

Les raccords avec un appareil ou une conduite, autres que les brides de raccordement, sont des joints filetés et des raccords à compression.

Les conduites ouvertes doivent être obturées par une soupape terminale ou une bride pleine, ou de toute autre manière.

Les tubulures d’échantillonnage doivent être munies de systèmes fermés de purge ou d’aération.

1.2 Sources non incluses

1.2.1 Le Code ne traite pas des émissions provenant d’une cheminée, d’une conduite ou de tout autre espace confiné et contrôlé, ni de sources dépendantes d’un matériel particulier. Les sources sectorielles ne sont pas incluses. Les sources particulières non incluses sont les suivantes :

- les cheminées;
- les événets;
- les systèmes de combustion;
- les réservoirs de stockage;
- les sites d’entreposage non couverts;
- les étangs et mares;
- les lits de séchage des boues;
- les puisards des tours de refroidissement;
- les séparateurs d’eaux résiduaires.

Ces autres sources sont examinées dans le cadre d’autres initiatives du Plan de gestion. On doit reconnaître et surveiller ces sources potentielles au moment opportun pendant la période de contrôle et de surveillance des émissions fugitives de COV.
1.3 Principes de la réduction des émissions fugitives

On suggère les méthodes suivantes de réduction des émissions fugitives, par ordre de priorité :

- la prévention par sélection d'appareils sans fuites ou à l'épreuve des fuites;
- le contrôle et la surveillance, en vue de la détection des fuites;
- l'application de mesures correctives aussi rapides que possible, (DFRM);
- l'amélioration continue du matériel ou l'application des mesures de prévention des fuites.

L'installation d'appareils à l'épreuve des fuites est l'option préférée. L'autorité compétente peut envisager d'autres solutions – par exemple, capturer les émissions puis les renvoyer dans un dispositif de régulation des émissions.
Partie 2
Critères d’application

2.1 Généralités

2.1.1 On peut procéder à la réduction des émissions fugitives de COV résultant de fuites provenant du matériel, conformément aux exigences du présent Code, en respectant les critères d’application élaborés dans cette partie du texte.

2.1.2 Ces critères s’appliquent précisément aux secteurs industriels suivants, conformément au Plan de gestion :

- dans le cadre de l’initiative V304, à toutes les nouvelles usines de produits chimiques organiques au Canada;

- dans le cadre de l’initiative V607, à toutes les raffineries de pétrole et raffineries de régénération des hydrocarbures actuelles, en Colombie-Britannique, en Ontario, au Québec et au Nouveau-Brunswick;

- dans le cadre de l’initiative V609, à toutes les usines actuelles de produits chimiques organiques, en Colombie-Britannique, en Ontario et au Québec.

2.1.3 Le Code est surtout destiné aux usines de produits chimiques organiques et aux raffineries des secteurs du Canada où les concentrations d’ozone au sol dépassent les taux maximums admissibles au Canada pendant l’été. Les limites réelles des secteurs à fort taux d’ozone seront définies par l’autorité compétente.

2.1.4 On doit surveiller le matériau transportant des circuits de COV, c’est-à-dire des circuits de traitement contenant au moins 10 p. 100 de COV en volume.

2.1.5 On procédera à la détection des fuites et à des réparations (DFRM) dans le cas des conduites de diamètre nominal supérieur ou égal à 1,875 cm.

2.2 Exemptions

2.2.1 Pièces ou éléments en service continu sous vide.

2.2.2 Pièces ou éléments en service dans un liquide dense.

2.2.3 Pièces ou éléments inaccessibles.

2.2.4 Soupapes de dimensions nominales inférieures à 1,875 cm.

2.2.5 Soupapes non commandées de l’extérieur (p. ex. : soupape de retenu).

2.2.6 Pièces ou éléments de construction étanche (p. ex. : pompes sans garniture d’étanchéité, pompes pourvues de vanne à soufflet, pompes à double garniture mécanique d’étanchéité et à fluide-barrière sous pression plus élevée que la pression de service de la pompe).

2.2.7 Conduites ouvertes pourvues d’une soupape à clapet, d’une soupape aveugle, d’une soupape à brides, d’une soupape à boisseau ou d’une seconde soupape.
Partie 3
Lignes directrices relatives à la performance

3.1 Généralités

3.1.1 Les lignes directrices relatives à la performance concernant l’application des mesures des concentrations des EFV et les efforts de réduction des EFV suivent les articles du présent paragraphe. Les exigences en matière de performance sont traitées plus en détail à l’appendice C.

3.1.2 Le propriétaire ou l’exploitant d’un site d’usine doit élaborer un plan de réduction des EFV qui, six mois après notification, devra être soumis à l’approbation de l’autorité compétente, après celle du CCME.

3.1.3 Le propriétaire ou l’exploitant d’un site d’usine peut diviser le site industriel en unités distinctes faciles à gérer, aux fins d’application, de gestion et de présentation du programme de DFRM.

3.2 Définition de fuite

3.2.1 Selon la définition donnée dans le présent Code, une fuite correspond à une concentration supérieure ou égale à 10 000 ppmv, telle que détectée à la source des émissions par un analyseur d’hydrocarbures, selon le protocole des mesures présenté à l’appendice F.

3.3 Détection des fuites et réparation du matériel

3.3.1 Des travaux de détection des fuites et de réparation du matériel s’imposent :
 • tous les trimestres pour les garnitures d’étanchéité et tous les ans pour tout le matériel restant;
 • immédiatement après les réparations pour tout matériel qui a subi des fuites;
 • dans un délai de 24 heures, dans le cas d’une soupape de surpression qui s’est déchargée dans l’atmosphère.

3.3.2 La fréquence des fuites ne doit pas dépasser 2 p. 100 pour tout ensemble de pièces et éléments surveillés, sauf la catégorie des pompes et compresseurs.

3.3.3 La fréquence des fuites subies par les pompes et compresseurs doit être inférieure au plus élevé de deux chiffres, à savoir 10 p. 100 du total ou 3.

3.3.4 Si la fréquence des fuites subies par un ensemble d’appareils et de matériel (p. ex. : brides) est inférieure à 2 p. 100 lors d’au moins deux étapes successives requises de DFRM, on peut appliquer une méthode statistique d’échantillonnage à cet ensemble de pièces et éléments (voir Appendice L) comme approuvée par l’autorité compétente, pour démontrer que l’ensemble respecte la valeur requise de fréquence des fuites, soit 2 p. 100 au maximum.

3.4 Réparations et entretien

3.4.1 On doit commencer à effectuer les réparations nécessaires pour empêcher les fuites dans un délai de cinq jours ouvrables et les terminer dans un délai de 15 jours ouvrables, sauf s’il faut procéder à la fermeture de l’usine ou si le nombre de pièces ou éléments nécessitant des réparations dépasser la capacité des ressources destinées à l’entretien (on doit documenter ces exceptions et noter les dates des mesures correctives).

3.4.2 On doit identifier les pièces ou éléments du matériel qui ne peuvent être réparés sans devoir arrêter le fonctionnement d’un appareil, et on doit prévoir les réparations pour la prochaine période d’arrêt.
Partie 4
Méthodes

4.1 Généralités

4.1.1 Ces lignes directrices nous donnent un choix de protocoles d'évaluation, de mesure et de réduction des fuites, qui peuvent être utilisés à la fois par les exploitants d'usines et par les organismes de réglementation. On doit se référer aux lignes directrices si l'on établit le degré de conformité d'une usine ou d'un site industriel du point de vue de la réduction des EFV.

4.1.2 Pour préparer un inventaire des EFV, on doit identifier les circuits de COV, la source des fuites et l'application du facteur d'émission à ces fuites. La méthode des mesures stratifiées et l'emploi des facteurs d'émission sont un minimum du point de vue de la préparation de l'inventaire. Dans le tableau D-2 (voir Appendice D), apparaissent les mesures stratifiées des facteurs d'émission qui sont applicables aux usines de produits chimiques organiques et aux raffineries de pétrole.

4.1.3 On doit répertorier les catégories de fuites pour les pièces et éléments des appareils et du matériel surveillés, à l'aide d'un appareil conforme aux exigences du protocole des mesures et approuvé par l'autorité compétente. (Voir Appendice F, «Protocole des mesures», qui présente un protocole recommandé des mesures.)

4.1.3.1 On doit procéder au contrôle et à la surveillance des pièces et éléments en tenant compte des variables associées à la détection des fuites. (Voir Appendice E.)

4.1.3.2 Les facteurs significatifs à reconnaître lors des mesures in situ des émissions, pour identifier les sources les plus probables de fuites, sont les suivants :

- type d'exploitation : le gaz est plus susceptible de fuir;
- cycle d'opérations : température et pression;
- type de courants gazeux de COV : les molécules légères fuient plus facilement;
- type de pièce ou d'élément des appareils ou du matériel : soupapes de réglage, soupapes de surpression, conduites ouvertes.

4.1.4 On doit consigner dans une base de données choisie par l'exploitant les résultats relatifs au contrôle et à la surveillance du matériel, obtenus avec un appareil approuvé.

4.1.4.1 On doit résumer, dans un rapport destiné à l'autorité compétente, les résultats du contrôle et de la surveillance du matériel, conformément aux exigences précisées à la partie 7 du présent Code. L'Appendice K comprend un exemple de programmation des résultats.

4.2 Inventaire du matériel

4.2.1 Le propriétaire ou l'exploitant doit préparer, pour l'usine, un inventaire du nombre total de pièces ou d'éléments des appareils ou du matériel qui sont susceptibles de devenir des sources de fuites telles que définies au paragraphe 1.1. On doit inclure dans cet inventaire certains éléments et pièces non sujets à des fuites.
4.2.2 On doit catégoriser les sources selon leur type, par exemple les soupapes, les pompes, etc.

4.2.2.1 On doit définir plus en détail chaque élément d'une catégorie donnée, selon ses dimensions et son utilisation.

4.2.2.2 On pourrait classer de façon plus précise les pièces ou les éléments selon les conditions de leur fonctionnement, comme les conditions de température et de pression et le degré de volatilité des circuits de traitement, au choix du propriétaire ou de l'exploitant.

4.2.3 Il faut présenter des copies de schémas exacts et récents de l'usine, ou de l'inventaire, ou des deux. On peut effectuer sur le terrain un relevé des installations ou du matériel pour préparer un inventaire.

4.3 Facteurs d'émission

4.3.1 On attribue à chaque catégorie de pièce ou d'élément des appareils et du matériel un facteur d'émission, en employant des mesures stratifiées des facteurs d'émission, ou mieux.

4.3.2 Le propriétaire ou l'exploitant peut utiliser son choix de facteurs d'émission tant qu'il respecte les exigences sur le degré de conformité (voir Partie 5) convenues avec l'autorité compétente.

4.3.3 On doit réaliser les mesures in situ des émissions provenant des pièces et des éléments de manière conforme au protocole figurant dans la méthode 21 de l'EPA (voir Appendice F).

4.3.4 Les instruments de mesure des émissions résultant de fuites provenant d'appareils doivent satisfaire aux exigences du protocole. L'Appendice E contient une liste des instruments couramment utilisés et de leurs caractéristiques.

4.3.4.1 Le propriétaire ou l'exploitant peut employer un autre instrument ou une autre méthode de mesure, avec l'approbation de l'autorité compétente.

4.3.4.2 L'Appendice E passe en revue les détails de la mesure des émissions et les difficultés connexes.

4.4 Établissement de l'inventaire des émissions

4.4.1 À l'aide de la base de données produite au paragraphe 4.1 et des facteurs appropriés déterminés au paragraphe 4.3, on dresse l'inventaire des EFV et on le consigne dans la feuille de rapport décrite à la partie 7.

4.4.2 Pour dresser l'inventaire des EFV, on doit employer les valeurs les plus récentes des facteurs d'émission.

4.4.2.1 On appliquera les facteurs d'émission énumérés au tableau D-2 de l'Appendice D pour les usines de produits chimiques organiques et les raffineries.
Partie 5
Conformité

5.1 Généralités

5.1.1 Toute installation doit satisfaire aux exigences du présent Code dans un délai de trois à cinq ans à partir de la date d’approbation du Code par le CCME.

5.1.2 Le propriétaire ou l’exploitant d’un site d’usine sera en règle lorsqu’il aura satisfait aux exigences du Code telles que définies à la partie 3.

5.2 Conformité

5.2.1 Examen du site dans le contexte d’un effort conjoint entre le propriétaire ou l’exploitant et l’autorité compétente, application des critères de la partie 2 du Code, et évaluation en fonction des exigences de réduction des EFV qui sont applicables au site.

5.2.2 Un inventaire des sources d’émission et des émissions totales sera tenu par le propriétaire ou l’exploitant, de manière conforme aux méthodes de la partie 4 du Code (au besoin).

5.2.3 Les résultats du contrôle et de la surveillance et de l’évaluation du matériel effectués par le propriétaire ou par l’exploitant doivent être communiqués à l’autorité compétente dans un format pré-approvée. (Voir Partie 7, «Établissement de rapports».)

5.2.4 Le propriétaire ou l’exploitant établira une documentation qui sera examinée par l’autorité compétente.

5.2.5 Le propriétaire ou l’exploitant pourra proposer et utiliser une méthode différente pour satisfaire aux exigences de réduction des EFV après approbation par l’autorité compétente.

5.3 Non-conformité

5.3.1 Si les conditions du paragraphe 3.3 ne sont pas remplies, le propriétaire ou l’exploitant devra répéter intégralement l’inspection de toutes les sources d’émission que représentent les pièces et les éléments, lors du prochain cycle de détection.

5.3.2 Au cas où deux cycles consécutifs complets de contrôle et de surveillance (après le délai convenu de conformité) n’indiquent pas une fréquence des fuites égale ou inférieure à 2 p. 100 à partir de matériel autre que les pièces des pompes et des compresseurs, l’autorité compétente peut exiger l’application d’un programme d’amélioration de la qualité (PAQ) aux catégories de matériel non conformes. (Voir, à l’appendice H, les détails relatifs au PAQ.)

5.3.3 En ce qui concerne la catégorie des pièces de pompes et de compresseurs, si la fréquence des fuites dépasse le plus élevé des deux chiffres, à savoir 10 p. 100 ou 3, l’autorité compétente peut exiger l’application d’un PAQ.

5.4 Autres détails sur la conformité

5.4.1 Les circuits de traitement entièrement contenus dans des installations sous pression negative, ventilées vers l’extérieur, avec contrôle d’au moins 95 p. 100 du débit d’air et dispositif de régulation surveillé, sont exemptés du DFRM, sous réserve de l’approbation de l’autorité compétente.

5.4.2 Le propriétaire ou l’exploitant doit se référer à l’appendice G pour examiner les normes sur le matériel qui peuvent augmenter le degré de conformité en imposant une meilleure technologie.
Partie 6
Documentation

6.1 Généralités

6.1.1 La documentation doit être conservée sous une forme facilement accessible par l'autorité compétente.

6.1.2 La documentation doit être conservée pendant au moins trois ans ou selon les exigences de l'autorité compétente.

6.1.3 L'utilisateur doit se référer aux tableaux K-2 à K-8 (voir Appendice K) pour trouver un format d'échantillonnage qui permette d'enregistrer les données de terrain relatives à divers éléments et pièces.

6.2 Objectifs de la documentation

6.2.1 Élaborer une base de dépistage initial pour un site d'usine.

6.2.2 Établir le fondement de l'inventaire des émissions.

6.2.3 Identifier les pièces et les éléments à inspector.

6.2.4 Établir un fondement de l'évaluation de la performance.

6.2.5 Suivre les installations sujettes à des fuites, ainsi que les réparations effectuées.

6.2.6 Identifier les pièces et les éléments inaccessibles ou d'accès dangereux.

6.3 Gestion des données

6.3.1 Le propriétaire ou l'exploitant sera entièrement responsable du mode de préparation des données et des outils employés pour stocker l'information in situ provenant du contrôle et de la surveillance du matériel.

Partie 7
Établissement de rapports

7.1 Généralités

7.1.1 On établira des rapports sur la conformité aux lignes directrices, selon les exigences de l'autorité compétente et dans un format uniforme.

7.1.2 On consignera les entrées de données d'un rapport sommaire tel qu'indiqué au tableau K-1 (voir Appendice K).

7.1.2.1 Le rapport K-1 et ses annexes soumis à l'autorité compétente seront mis à la disposition du public.

7.1.3 Les rapports annuels seront soumis à l'autorité compétente chaque année, au plus tard le 31 mars de l'année suivant l'année de l'enquête ou selon les exigences de l'autorité compétente.

8
Partie 8
Recommandations

8.1 Généralités

8.1.1 La mise en application du présent Code ne doit pas nuire à la sécurité de l’usine ni à la santé des travailleurs ou de la collectivité.

8.1.2 Le premier objectif du Code est la réduction des émissions fugitives de COV. Il convient de donner la priorité aux solutions qui permettent d’atteindre l’objectif visé de la façon la plus rentable.

8.1.3 On préfère les stratégies de prévention aux stratégies de contrôle et aux stratégies correctives.

8.1.4 On peut inspecter périodiquement les secteurs d’exploitation de l’usine avec un analyseur de gaz ou tout autre instrument, réglé dans la gamme inférieure de détection (la plus sensible) pour décevoir les taux élevés d’hydrocarbures. On doit ensuite effectuer un contrôle et une surveillance continu des fuites avec un modèle d’analyseur prescrit, afin d’identifier les pièces et les éléments sujets à des fuites.

8.2 Qualité de l’entretien

8.2.1 On doit envisager un programme de gestion totale de la qualité qui comprenne :

- l’identification des appareils ayant une performance médiocre, et la réparation ou le remplacement de ces appareils;

- une analyse et un examen permanents de la technologie disponible;

- des essais de performance dans l’usine même;

- l’inspection fréquente des soupapes de réglage, des pompes et des garnitures d’étanchéité;

- la réinspection du matériel qui avait été mis hors service, au moment de sa réutilisation.

8.2.2 On doit établir une documentation, de façon à pouvoir identifier toutes les pièces et tous les éléments échantillonnés, et à fournir des détails des mesures faites sur les pièces et les éléments sujets à des fuites. Les réparations et les remplacements des pièces et des éléments sujets à des fuites doivent figurer dans la documentation.

8.3 Planification à long terme

8.3.1 Le propriétaire ou l’exploitant doit chercher à élaborer un plan à long terme de réduction des EFV sur le site de leur usine.

8.3.2 Il est recommandé de lancer les programmes de réduction des fuites au début de l’année afin de diminuer le problème de pollution par l’ozone, particulièrement sérieux pendant les mois chauds d’été.
8.3.3 Pour respecter l'objectif de réduction des EFV, on suggère de documenter les efforts et les résultats positifs obtenus pendant un certain intervalle.

8.4 Modes d’exploitation

8.4.1 Le propriétaire ou l'exploitant doit envisager la meilleure technologie disponible, lorsqu'il procède au remplacement de pièces et d'éléments lors du dépistage des fuites de fréquence élevée. (Voir, à l'appendice I, les commentaires additionnels sur les normes relatives au matériel.)

8.4.2 Lors de la réduction des EFV, on doit donner la priorité au traitement des pièces et des éléments sujets à des fuites importantes, et surtout chercher à ramener les fuites à un niveau acceptable.

8.4.3 Le matériel doit être surveillé par du personnel formé.

8.4.4 On doit effectuer les mesures des EFV en tenant compte des difficultés associées aux conditions météorologiques. (Voir, à l'appendice E, les détails relatifs aux variables de la détection des fuites.)

8.4.5 Pour bien effectuer le contrôle et la surveillance du matériel, on doit comprendre les variables associées à la détection des fuites. (Voir l'appendice E pour obtenir plus de détails.)
Appendices

Appendice A Liste des membres du Comité de travail
Appendice B Codes industriels canadiens applicables aux raffineries de pétrole et aux usines de produits chimiques organiques
Appendice C Exigences en matière de performance
Appendice D Facteurs d'émission – Origine et application
Appendice E Variables de la détection des fuites
Appendice F Protocole des mesures
Appendice G Guide des normes relatives au matériel
Appendice H Programmes d'amélioration de la qualité
Appendice I Expérience acquise par les États-Unis
Appendice J Explication des limites des mesures
Appendice K Enregistrement des données et établissement de rapports
Appendice L Exemples d'évaluation statistique
Appendice M Bibliographie
Appendice A
Liste des membres du Comité de travail

David Blair
Ministère de l'Environnement de la Nouvelle-Ecosse
Téléphone : (902) 424-5300
Télécopieur : (902) 424-0503

Fernand Cadieux/Yves Bourassa
Communauté urbaine de Montréal
Téléphone : (514) 280-4328
Télécopieur : (514) 280-4318

Fred Chen
Direction des programmes industriels
Environnement Canada
Téléphone : (819) 953-1134
Télécopieur : (819) 953-5595

Rick Coronado
Citizens Environment Alliance
Organisme environnemental non gouvernemental
Téléphone : (519) 255-1616
Télécopieur : (519) 255-1616

Guy Demers
Direction des orientations et support scientifique
Ministère de l'Environnement du Québec
Téléphone : (418) 644-3422
Télécopieur : (418) 528-1492

Art Dunlop**
Association canadienne des fabricants de produits chimiques
Téléphone : (519) 337-8251
Télécopieur : (519) 337-2483

Doug Harper
Direction des ressources atmosphériques
Ministère de l'Environnement de l'Ontario
Téléphone : (416) 323-5053
Télécopieur : (416) 323-5006

Jim Knight/Mike Murphy
Ministère de l'Environnement du Nouveau-Brunswick
Téléphone : (506) 453-2477
Télécopieur : (506) 453-2266

Jim Leblanc
Irving Oil Ltd.
Téléphone : (506) 633-3000
Télécopieur : (506) 633-4002

Chow-Seng Liu
Air Quality Branch
Environment Alberta
Téléphone : (403) 427-5872
Télécopieur : (403) 422-4192

Idrees Mahmud
Compagnie pétrolière impériale Ltée
Téléphone : (519) 339-2531
Télécopieur : (519) 339-2213

Morris Mennell
Air Quality and Source Control
District de la région métropolitaine de Vancouver
Téléphone : (604) 436-6740
Télécopieur : (604) 436-6707

Ray Perras
Direction des programmes industriels
Environnement Canada
Téléphone : (819) 953-1143
Télécopieur : (819) 953-8903

Bill Puckering, consultant*
B.H. Levelton & Associates Ltd.
Téléphone : (604) 382-0011
Télécopieur : (604) 381-1314

B.M. Roach**
Independent Petroleum Association of Canada
Téléphone : (403) 271-2358

K. Smith
Independent Petroleum Association of Canada
Téléphone : (403) 290-1530
Télécopieur : (403) 290-1680

Art Stelzig, président
Direction des programmes industriels
Environnement Canada
Téléphone : (819) 953-1131
Télécopieur : (819) 994-7762

John Tierney
Novacor Chemicals
Association canadienne des fabricants de produits chimiques
Téléphone : (519) 481-3435
Télécopieur : (519) 481-3589

Bruce Walker
STOP Inc.
Organisme environnemental non gouvernemental
Téléphone : (514) 932-6204
Télécopieur : (514) 932-7267

Gary Webster
Association canadienne des producteurs de pétrole
Téléphone : (403) 267-1146
Télécopieur : (403) 266-3214
Membres correspondants

Conrad Anctil
Ellen Baar
R. Baird, consultant
W. Bilawich, projets spéciaux
K. Bodnar
P. Brown, Lutte contre la pollution
J. Carpentier
B. Dahlstrom
A. Davies, consultant
A.M. Day, sup. Santé et Environnement
G. Ethier, coordonnateur technique
L. Hamel, Pétromont
B. Hubbard
G. Lambert
L. Lechner
J. Logan
K. Ma
A. MacGregor, coordonnateur
A. Mackinnon, Contrôle de la pollution atmosphérique
D. Maddocks
G. Miffin
R. Migliorina
R. Murry, président
B. Nadon, chef, Contrôle de la pollution atmosphérique
D. Picard, consultant
D. Putnam **
J. Retallack
D. Richard
H. Schiff, président
H. Schols, consultant
F. Seif, Pétro-Canada
T. Shopik, Oil Sands Group
M. Smith
M. Stephen
L. Strachan, chef, Contrôles environnementaux
B. Tremblay
K. Van Dewark, directeur de raffinerie
E. Wituschek,
Division atm/produits chimiques
L.W. Wolfe
D. Woo, Contaminants Ind.

Ministère de l'Environnement du Québec
York University
Stone-Webster Canada Ltd.
Yukon Renewable Resources
Syncrude Canada
Environnement Canada, Ontario
Pétromont
Co-op Refinery
Rowan, Williams, Davies and Irwin
Celanese Canada Inc.
Institut canadien des produits pétroliers, Ottawa
Association canadienne des fabricants de produits chimiques
Energy Resources Conservation Board
Compagnie pétrolière impériale Ltée, Division des ressources
Saskatchewan Environment
Association canadienne des fabricants de produits chimiques
Novacor
Canadian Environmental Network
Environnement Canada, Maritimes
Department of Environment and Lands, Terre-Neuve
Newfoundland Processing Ltd.
Institut canadien des produits pétroliers, Québec
Association canadienne de l'industrie de la peinture et du revêtement
Environnement Canada, Québec
Clearstone Engineering Ltd.
Institut canadien des produits pétroliers, Ontario
Novacor Chemicals
Ministère de l'Énergie et des Ressources
Unisearch Associates
Radian Corp. Canada
Institut canadien des produits pétroliers, Ontario
Suncor
Pollution Control Division, Territoires du Nord-Ouest
Chevron Canada Ltée
Ministère de l'Environnement du Manitoba
Ultramar Canada
Parkland Industries
Environnement Canada, région du Pacifique
Pétro-Canada
Environnement Canada, régions Ouest et Nord

Remarque : Quelques membres correspondants se sont joints au groupe pendant l'élaboration du Code.
Appendice B
Codes industriels canadiens applicables aux raffineries de pétrole et aux usines de produits chimiques organiques

<table>
<thead>
<tr>
<th>Statistique Canada</th>
<th>Classification type des industries (1980)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand groupe 36 – Industries des produits raffinés à base de pétrole et de charbon</td>
<td>Classification type des industries par l'EPA (classification internationale)</td>
</tr>
<tr>
<td>361 – Industries du pétrole raffiné</td>
<td>29</td>
</tr>
<tr>
<td>3611 Industrie des produits pétroliers raffinés (sauf les huiles lubrifiantes et les lubrifiants pâteux)</td>
<td>2911</td>
</tr>
<tr>
<td>Établissements qui en priorité fabriquent une famille de produits à base de pétrole sauf des huiles lubrifiantes et des lubrifiants pâteux. Ces établissements sont classés dans 3612 – Industrie des huiles lubrifiantes et des lubrifiants pâteux.</td>
<td></td>
</tr>
<tr>
<td>Alkylat dérivé du pétrole</td>
<td>Kérosène</td>
</tr>
<tr>
<td>Alkylation du pétrole</td>
<td>Matières premières, pétrochimiques</td>
</tr>
<tr>
<td>Carburant diesel</td>
<td>Mazouts</td>
</tr>
<tr>
<td>Carburéacteur</td>
<td>Naphtha</td>
</tr>
<tr>
<td>Craquage et réformage du pétrole</td>
<td>Polymérisation et isomérisation du pétrole</td>
</tr>
<tr>
<td>Distillation du pétrole</td>
<td>Produits à base de pétrole pour huiles lubrifiantes et lubrifiants pâteux</td>
</tr>
<tr>
<td>Essence (y compris essence aviation)</td>
<td>Propane, raffinage</td>
</tr>
<tr>
<td>Gaz butane, raffinerie</td>
<td>Raffinage du pétrole</td>
</tr>
<tr>
<td>Gaz de distillation en raffinerie</td>
<td></td>
</tr>
<tr>
<td>Gaz de pétrole liquéfiés (GPL), raffinerie</td>
<td></td>
</tr>
<tr>
<td>3612 Industrie des huiles lubrifiantes et des lubrifiants pâteux</td>
<td></td>
</tr>
<tr>
<td>Établissements qui en priorité fabriquent et mélangent des huiles lubrifiantes et lubrifiants pâteux. Les établissements qui en priorité retraitent les huiles usées sont classés dans cette industrie.</td>
<td></td>
</tr>
<tr>
<td>Graisse spéciale pour essieu</td>
<td>Huiles pour transmission</td>
</tr>
<tr>
<td>Huiles de coupe</td>
<td>Hydrogénéation des graisses</td>
</tr>
<tr>
<td>Huiles de décalage</td>
<td>Mélange d’huile lubrifiante et de lubrifiants pâteux</td>
</tr>
<tr>
<td>Huiles de meulage</td>
<td>Purification et régénération des huiles lubrifiantes</td>
</tr>
<tr>
<td>Huiles de transformateur</td>
<td>Retraitement des huiles usées</td>
</tr>
<tr>
<td>Huiles lubrifiantes et lubrifiants pâteux</td>
<td></td>
</tr>
<tr>
<td>Huiles pénétrantes</td>
<td></td>
</tr>
<tr>
<td>Huiles pour moteur</td>
<td></td>
</tr>
</tbody>
</table>

Grand groupe 37 – Industries chimiques et industries de produits chimiques

<p>| 371 – Industries des produits chimiques | |
| 3712 Industrie de produits chimiques organiques | 2824, 2869 |
| Établissements qui en priorité fabriquent des produits chimiques industriels comme des acides aliphatiques, des alcools (sauf l’alcool éthylique), du glycol, des monomères non saturés, des composés à fonction amine et des composés comprenant une cétone et une quinine. Les produits secondaires des établissements appartenant à cette industrie comprennent les matières plastiques non usinées et les additifs de produits pétroliers. Les établissements qui en priorité fabriquent des |</p>
<table>
<thead>
<tr>
<th>Statistique Canada</th>
<th>Classification type des industries (1980)</th>
</tr>
</thead>
<tbody>
<tr>
<td>matières plastiques non usinées sont classés dans 3731 – Industrie des plastiques et des résines synthétiques; ceux qui en priorité fabriquent des additifs de produits pétroliers sont classés dans 3799 – Autres industries de produits chimiques; et ceux qui en priorité fabriquent de l'alcool éthylique sont classés dans 1121 – Industrie des produits de distillation.</td>
<td></td>
</tr>
<tr>
<td>Acétone (2-propanone)</td>
<td>Chlorure de vinyle monomère (monochloéthylène)</td>
</tr>
<tr>
<td>Acide acétique et ses dérivés</td>
<td>Chlorure d'éthyle</td>
</tr>
<tr>
<td>Acide acétylsalicylique</td>
<td>Composés à fonction cétonne</td>
</tr>
<tr>
<td>Acide acrylique et ses dérivés</td>
<td>Composés à fonction quinone</td>
</tr>
<tr>
<td>Acide formique et ses dérivés</td>
<td>Composés aminés</td>
</tr>
<tr>
<td>Acide lactique</td>
<td>Composés azotés</td>
</tr>
<tr>
<td>Acide méthylchlorophénoxacétique</td>
<td>Composés organiques-inorganiques</td>
</tr>
<tr>
<td>(MCP ou MCPA)</td>
<td>Composés organosulfurés</td>
</tr>
<tr>
<td>Acide phénique</td>
<td>Créosol</td>
</tr>
<tr>
<td>Acide picrique (trinitrophénol)</td>
<td>Créosois</td>
</tr>
<tr>
<td>Acide salicylique</td>
<td>Cyclohexane</td>
</tr>
<tr>
<td>Acide tartique</td>
<td>DDT de qualité commerciale</td>
</tr>
<tr>
<td>Acides gras et leurs dérivés</td>
<td>(dichloro-diphényl-trichloroéthane)</td>
</tr>
<tr>
<td>Acides organiques (leurs anhydrides, halogénures, peroxydes, peracides et leurs dérivés)</td>
<td>Dérivés des hydrocarbures halogénés (aromatiques, acryliques, saturés ou non)</td>
</tr>
<tr>
<td>Alcool décylique</td>
<td>Dibromure d'éthylène (bromure d'éthylène)</td>
</tr>
<tr>
<td>Alcool méthylamylique</td>
<td>Dichlorobenzène, ortho-, para-</td>
</tr>
<tr>
<td>Alcool méthyléthyléthyléthyle (méthanol, alcool de bois)</td>
<td>Dichlorure d'éthylène</td>
</tr>
<tr>
<td>Alcool octyléthyle (2 éthylhexanol)</td>
<td>Esters</td>
</tr>
<tr>
<td>Alcools butyleliques</td>
<td>Ethyléneglycol, mono-</td>
</tr>
<tr>
<td>Alcools et leurs dérivés (halogénés, sulpônés, nitrés, nitrosés)</td>
<td>Glycérol (glycérine), brut ou raffiné</td>
</tr>
<tr>
<td>Alcools monohydriques, saturés et leurs dérivés</td>
<td>Hexachlorure de benzène</td>
</tr>
<tr>
<td>Alcools polyhydriques et leurs dérivés</td>
<td>Hexaméthylénediamine</td>
</tr>
<tr>
<td>Alcools propyleliques</td>
<td>Hexyléneglycol</td>
</tr>
<tr>
<td>Aldéhydes</td>
<td>Huiles de silicone (sauf résines)</td>
</tr>
<tr>
<td>Aldrine de qualité commerciale</td>
<td>Hydrocarbures</td>
</tr>
<tr>
<td>Amino-acides</td>
<td>Hydrocarbures acycliques</td>
</tr>
<tr>
<td>Benzène (benzol)</td>
<td>Hydrocarbures halogénés, fluorés</td>
</tr>
<tr>
<td>Béta-naphtol</td>
<td>Isophorone</td>
</tr>
<tr>
<td>Bisphénol A</td>
<td>Lindane</td>
</tr>
<tr>
<td>Camphre, naturel et synthétique</td>
<td>Méthyléthylcétone</td>
</tr>
<tr>
<td>Caoutchouc synthétique, du type butadiène ou butyl</td>
<td>Méthylisobutylcétone</td>
</tr>
<tr>
<td>Chloroforme</td>
<td>Monoacides et leurs dérivés</td>
</tr>
<tr>
<td>Chlorophénols</td>
<td>Naphtaléne</td>
</tr>
<tr>
<td>Chlorure de méthyle</td>
<td>Oxyacides et leurs dérivés</td>
</tr>
<tr>
<td>Chlorure de méthyléthyle</td>
<td>Pentachlorophénol et ses sels</td>
</tr>
<tr>
<td>Classification type des industries selon l'EPA (classification internationale)</td>
<td>2821, 2822, 2823</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Statistique Canada Classification type des industries (1980)</td>
<td></td>
</tr>
<tr>
<td>373 – Industrie des plastiques et des résines synthétiques</td>
<td></td>
</tr>
<tr>
<td>3731 Industrie des plastiques et des résines synthétiques</td>
<td></td>
</tr>
<tr>
<td>Établissements qui en priorité fabriquent des résines synthétiques sous forme de poudres, de granules, de flocons ou de liquides, ou effectuant le mélange de résines synthétiques pour fabriquer des matières plastiques. Les établissements qui en priorité fabriquent des produits chimiques servant à l'élaboration de résines synthétiques sont classés dans 3712 – Industrie de produits chimiques organiques.</td>
<td></td>
</tr>
<tr>
<td>Acétate de cellulose (y compris acétate butyrate)</td>
<td>Résines coumarone-indène</td>
</tr>
<tr>
<td>Carboxyméthylcellulose de sodium</td>
<td>Résines de condensation</td>
</tr>
<tr>
<td>Hydroxyéthylcellulose</td>
<td>Résines de polymérisation</td>
</tr>
<tr>
<td>Méthylcellulose</td>
<td>Résines de styrène</td>
</tr>
<tr>
<td>Nitrate de cellulose (coton collodion)</td>
<td>Résines échangeuses d’ions</td>
</tr>
<tr>
<td>Plastiques et résines synthétiques, condensation</td>
<td>Résines époxy</td>
</tr>
<tr>
<td>Plastiques et résines synthétiques, fabrication de composés et mélanges</td>
<td>Résines phénol-formaldéhyde</td>
</tr>
<tr>
<td>Plastiques et résines synthétiques, polymérisation (solution, émulsion, irradiation)</td>
<td>Résines polyamides (y compris nylon)</td>
</tr>
<tr>
<td>Plastiques et résines synthétiques, régénération, précipitation et coagulation</td>
<td>Résines polyester</td>
</tr>
<tr>
<td>Résines acryliques</td>
<td>Résines polyéthylène</td>
</tr>
<tr>
<td>Résines carbamides</td>
<td>Résines polypropylène</td>
</tr>
<tr>
<td>Résines cellulosiques</td>
<td>Résines polyuréthane</td>
</tr>
<tr>
<td></td>
<td>Résines protéiques durcies</td>
</tr>
<tr>
<td></td>
<td>Résines silicones</td>
</tr>
<tr>
<td></td>
<td>Résines synthétiques</td>
</tr>
<tr>
<td></td>
<td>Résines vinyles</td>
</tr>
<tr>
<td></td>
<td>Xanthate de cellulose (viscose)</td>
</tr>
</tbody>
</table>
Appendice C
Exigences en matière de performance

Les lignes directrices relatives à la performance sont établies à la partie 3 du Code. Pour que le Canada remplit ses obligations internationales en matière de réduction des émissions de COV, il faudra établir des niveaux de référence pour les émissions actuelles, exprimés en termes réels, par exemple en kilotonnes de COV par année. Les futures mesures devront se rapporter à ce niveau de référence, pour que l'on puisse quantifier correctement les réductions réelles des émissions auxquelles on est parvenu.

Les estimations des émissions totales venant des usines, sans essai préliminaire de dépistage, ne suffisent pas pour quantifier les réductions des émissions. Ces estimations aident à identifier l'ordre de grandeur des émissions et les pièces et éléments ainsi que les types d'utilisation produisant des émissions élevées. Les valeurs des réductions doivent être basées sur les résultats de mesures in situ pour indiquer l'état du matériel. Le matériau ancien tend à subir plus de fuites en raison de son usure.

Exigences minimums en matière de performance

Pour démontrer le degré de conformité avec l'objectif qui est de mesurer et de contrôler les émissions fugitives de COV, on suggère de documenter les efforts et les réussites pendant une certaine période. Les exigences minimums sont les suivantes :

a) La préparation d'un inventaire de tous les éléments et pièces du matériel fonctionnant en présence de COV.

b) Le programme de DFRM, avec définition des fuites comme précisé dans la partie 3 pour tous les éléments et pièces fonctionnant en présence de COV. Autrement, on pourrait envisager d'accepter un programme comportant un échantillonnage in situ suffisant de tous les éléments non sujets à des fuites, pour que des corrélations statistiques valides s'appliquent à tout le matériel de l'usine.

On doit établir une documentation permettant d'identifier tous les éléments et pièces échantillonnés, sujets à des fuites ou non, donner des détails des mesures effectuées, et décrire les efforts faits pour remplacer et réparer les pièces et éléments sujets à des fuites.

Cette exigence servira de niveau de référence pour l'estimation des émissions fugitives totales de COV.

c) On poursuit les programmes visant à déterminer les progrès du point de vue de la prévention et de la réduction des fuites.

d) On établit actulement le niveau définissant une fuite à 10 000 ppmv. Cette limite peut être abaissée et peut varier pour divers éléments et pièces du matériel.

e) On doit démontrer que des progrès ont été réalisés du point de vue de l'atteinte des objectifs relatifs à la prévention des émissions.
Méthode recommandée

Selon l'expérience acquise par l'industrie américaine, il faut d'abord procéder à la mise à jour des schémas afin de :

- disposer d'une source fiable et cohérente de connaissances sur les appareils industriels;
- disposer d'une liste précise du matériel à surveiller;
- disposer d'une base de données précise;
- éviter tout travail superflu de manipulation des pièces et éléments ne nécessitant pas de contrôle ou de surveillance.

On doit aussi se rappeler qu'en procédant par étapes, on pourra atteindre plus rapidement des réductions que si tous les circuits de COV étaient traités simultanément. Là aussi, l'expérience acquise par les États-Unis indique l'importance de travailler de façon complète sur chaque appareil pris individuellement (mise à jour des schémas, étiquetage, production d'une base de données, contrôle et surveillance), puis de passer à l'étape suivante. Toute autre façon de procéder a donné lieu à des efforts supplémentaires pour rectifier les erreurs et omissions qu'entraîne la pression associée au travail à la chaîne.

On doit aussi procéder par étapes avec les types de circuits de COV à surveiller. Les circuits à matériaux légers et les circuits gazeux entraînent plus de COV et sont probablement plus sujets à des fuites. Les circuits à matériaux plus lourds entraînent moins de COV et, dans l'ensemble, constituerait un pourcentage beaucoup plus faible de l'inventaire des émissions.

En procédant par paliers, on pourra appliquer les mesures nécessaires de façon à ne pas excéder les ressources disponibles, tout en atteignant des taux significatifs de réduction des émissions de COV.
Appendice D
Facteurs d’émission – Origine et application

Méthodes d’estimation des émissions fugitives

Les méthodes couramment employées pour estimer les émissions fugitives, par ordre croissant de précision et degré croissant d’emploi des ressources, sont les suivantes :

- Δ facteurs d’émissions attribuables aux raffineries de pétrole et facteurs « moyens » d’émissions attribuables aux industries de fabrication de produits chimiques organiques synthétiques (IFPCOS);
- Δ facteurs d’émissions attribuables au matériel sujet à des fuites et au matériel non sujet à des fuites;
- Δ mesures stratifiées des facteurs d’émissions;
- Δ équations de corrélation des débits de fuite définis par l’EPA et de la valeur de dépistage;
- Δ équations de corrélation entre les débits de fuite particuliers des circuits de type industriel et la valeur obtenue lors de la détection des émissions.

Remarque : Rappelons que les méthodes susmentionnées de l’EPA sont basées sur les données relatives aux usines fournies par le groupe d’IFPCOS, et sont de ce fait biaisées vers le haut en raison de la prise en compte des usines de polyéthylène qui emploient des pressions de 15 000 à 40 000 psig. Également, la mise au point de toutes ces diverses méthodes en vue d’établir des inventaires des émissions dans le cadre de la méthode de l’EPA est fondée sur le même ensemble de données sur l’IFPCOS; on a seulement employé une différente méthode d’analyse.

1. Base de données sur les émissions fugitives de COV

Plusieurs études sur les émissions fugitives ont été réalisées aux États-Unis de la fin des années 1950 à la fin des années 1970. On a reconnu le besoin de disposer de meilleurs moyens de contrôle; entre 1987 et 1989, l’industrie chimique américaine, avec l’assistance de l’EPA, des autorités des États américains et des écologistes intéressés, a entrepris un vaste programme de collecte de données en vue d’évaluer les émissions fugitives résultant de fuites à partir du matériel. Vingt-cinq sociétés de produits chimiques y ont participé en tant que membres de la Chemical Manufacturers Association (CMA). On a recueilli des données venant de 40 installations de traitement appartenant aux industries de fabrication des produits suivants : acroléine, 1-3 butadiène, oxyde d’éthylène et phosgène. Elles ont cherché à dépister les fuites dans toutes les soupapes et les pompes, tous les compresseurs et toutes les soupapes de sûreté, effectué un échantillonnage statistique des brides et autres raccords, et inspecté plus de 92 000 pièces et éléments en considérant qu’une pièce ou un élément est sujet à une fuite si le débit d’émission est d’au moins 10 000 ppmv. En fonction des données recueillies, on a élaboré les facteurs d’émission établis pour l’IFPCOS en vue d’estimer les taux massiques totaux des émissions fugitives provenant d’un compte donné de pièces et d’éléments du matériel. L’information recueillie a permis d’élaborer des équations de corrélation qui ont indiqué la fréquence probable des éléments sujets à des fuites ainsi que le taux probable des fuites subies par les divers éléments et pièces.
Les résultats des études de l'IFPCOS ont aussi révélé des différences significatives des débits de fuite dans différentes industries. Les relevés ultérieurs aux fins de dépistage effectués par l'industrie ont mis en évidence des fréquences de fuites considérablement inférieures aux résultats obtenus par l'EPA et indiqués au tableau D-1.

TABLEAU D-1
COMPARAISON DE LA FRÉQUENCE DES FUITES PROVENANT D'ÉLÉMENTS ET DE PIÈCES D'IMPORTANCE CRITIQUE, AVEC LES CHIFFRES FOURNIS PAR L'ÉTUDE ORIGINALE DE L'EPA (les valeurs représentent la fréquence moyenne des fuites en pourcentage)

<table>
<thead>
<tr>
<th></th>
<th>Soupapes pour gaz</th>
<th>Soupapes pour liquide</th>
<th>Pompes</th>
<th>Brides</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>11,4</td>
<td>6,5</td>
<td>8,8</td>
<td>2,1</td>
</tr>
<tr>
<td>Butadiène (13 usines)</td>
<td>1,7</td>
<td>2,4</td>
<td>7,7</td>
<td>0,1</td>
</tr>
<tr>
<td>Oxyde d'éthylène</td>
<td>1,2</td>
<td>0,1</td>
<td>4,2</td>
<td>0,6</td>
</tr>
<tr>
<td>(12 usines)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acroliène (2 usines)</td>
<td>0,0</td>
<td>0,08</td>
<td>3,7</td>
<td>0,0</td>
</tr>
<tr>
<td>Phosgène (13 usines)</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Source : Berglund, R.L., 1991

Dans l'industrie du phosgène, 99,8 p. 100 des pièces et éléments ont été inspectés aux teneurs atmosphériques de fond. Les résultats figurant au tableau D-1 illustrent la différence significative des débits de fuite d'une industrie à l'autre, et confirmant la nécessité de continuer à établir des courbes de corrélation se rapportant aux valeurs détectées des débits de fuite, spécifiques de l'industrie.

Les différences de performance des industries ont été attribuées :
- \(\Delta\) à la qualité des programmes de contrôle et de surveillance des fuites;
- \(\Delta\) à l'efficacité des programmes d'entretien;
- \(\Delta\) aux mesures de prévention des fuites.

Quantification des émissions

On a élaboré les méthodes couramment utilisées pour estimer ou mesurer la quantité totale d'émissions fugitives de COV produites par une usine, à partir des données recueillies aux États-Unis dans le cadre des programmes de l'EPA. Ces méthodes sont susceptibles de révisions ou de raffinements, ou les deux, à mesure que progresse la technologie; elles sont décrites ci-après selon un ordre croissant de précision.

Facteurs moyens d'émission pour l'IFPCOS – Raffineries de pétrole

Ceci représente une estimation des émissions totales venant des usines; on l'obtient en multipliant un facteur d'émission moyen pour chaque type de matériel par le compte du matériel, pour obtenir le débit d'émission. Il est nécessaire de compter tous les types de pièces destinées à un usage donné (par exemple, avec un gaz, un liquide léger, un liquide dense) et de connaître la composition des divers circuits. On emploie l'inventaire du matériel de l'usine et les facteurs standard d'émission figurant au tableau D-2.

Facteurs d'émission en présence ou en l'absence de fuites

Ceci représente la première étape du relevé des fuites, parfois appelée dépistage des fuites dans les pièces et éléments. On ne mesure pas les débits massiques d'émissions, mais on inspecte les pièces et éléments du matériel pour dépister toute fuite.
TABLEAU D-2 SOURCES D’ÉMISSIONS FUGITIVES ET FACTEURS D’ÉMISSION POUR LES USINES DE PRODUITS CHIMIQUES ORGANIQUES ET LES RAFFINERIES DE PÉTROLE

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Usage</th>
<th>Mesures stratifiées des valeurs relevées lors du dépistage, ppmv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 - 1 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kg/source/h</td>
</tr>
<tr>
<td>Soupapes</td>
<td>Gaz/vapeur</td>
<td>0,000 14</td>
</tr>
<tr>
<td></td>
<td>Liquide léger</td>
<td>0,000 28</td>
</tr>
<tr>
<td></td>
<td>Liquide dense</td>
<td>0,000 23</td>
</tr>
<tr>
<td>Garnitures étanches de pompe</td>
<td>Liquide léger</td>
<td>0,001 98</td>
</tr>
<tr>
<td></td>
<td>Liquide dense</td>
<td>0,003 80</td>
</tr>
<tr>
<td>Garnitures d’étanchéité</td>
<td>Gaz/vapeur</td>
<td>0,011 32</td>
</tr>
<tr>
<td>Soupapes de sûreté</td>
<td>Gaz/vapeur</td>
<td>0,01 14</td>
</tr>
<tr>
<td>Brides</td>
<td>Tous usages</td>
<td>0,000 02</td>
</tr>
<tr>
<td>Conduites ouvertes</td>
<td>Tous usages</td>
<td>0,000 13</td>
</tr>
<tr>
<td>Raccords filetés</td>
<td>Tous usages</td>
<td>0,000 02</td>
</tr>
<tr>
<td>Tubulures d’échantillonnage</td>
<td>Tous usages</td>
<td>Comme pour les pièces et éléments</td>
</tr>
</tbody>
</table>

Ce tableau a été établi par l’EPA aux États-Unis pendant son étude de l’industrie. Il est fondé sur la moyenne des valeurs obtenues lors de l’inspection des pièces et éléments. On a considéré que les pièces et éléments étaient sujets à des fuites lorsque la valeur relevée dépassait 10 000 ppmv. On a enregistré les valeurs mesurées, puis on les a utilisées pour déterminer le débit typique d’émission que des pièces et éléments de ce type devraient produire. Ceci a permis d’estimer les émissions produites par des pièces et éléments similaires employés par l’industrie, lorsque des inventaires sont requis.

Remarque : Les facteurs sont basés sur l’étude d’appareils précis. L’application des facteurs ne tient compte ni de l’âge des appareils ni des différences dans les conditions d’exploitation de ces appareils, qui pourraient aboutir à des débits d’émission très différents. Des mesures in situ ont démontré que dans la plupart des cas, ces facteurs surestimblaient les émissions réelles. On recommande de procéder à des mesures in situ sur des échantillons pour caractériser l’usine étudiée. On considère que des fuites ont lieu si le débit est supérieur à 10 000 ppmv.

Pour estimer le débit d’émission total, on multiplie le nombre de pièces et éléments de chaque type, qu’ils soient sujets ou non à des fuites, par le facteur d’émission approprié.

On prévoit que, dans la plupart des cas, il sera possible d’effectuer sur place et immédiatement des réparations pour stopper les fuites dès leur détection.

On détermine les fuites en employant des instruments portatifs antidéflagrants (voir Appendice E) et le protocole des mesures selon la méthode 21 de l’EPA (voir Appendice F). Dans la description de la méthode 21, on définit comme fuite une émission dont la concentration locale lue par les appareils de mesure est supérieure ou égale à la valeur d’un étalement de référence, par exemple une concentration de méthane de 10 000 ppmv.
La méthode 21 inclut une description d’un autre type de dépistage des fuites, basé sur l’essai de la bulle de savon, qui peut servir à localiser les fuites. Une fois repérée, une fuite doit être mesurée par rapport à l’étalon de référence au moyen d’un appareil de mesure; on pourra ainsi déterminer s’il faut appliquer un facteur d’émission associé ou non associé à une fuite, à une pièce ou à un élément donnés.

Mesures stratifiées des facteurs d’émission (minimum recommandé dans le cadre du Code)

La méthode des mesures stratifiées des facteurs d’émission représente un affinement de la méthode de mesure des émissions en présence ou en l’absence de fuites; elle consiste à identifier plusieurs niveaux de fuites, et à attribuer un différent facteur d’émission à chaque niveau. Les trois gammes de détection employées par l’EPA sont les suivantes : 0 – 1 000, 1 001 – 10 000 et > 10 000 ppmv. Les inspecteurs des usines peuvent constater qu’avec très peu d’efforts additionnels, il est possible d’enregistrer les niveaux de réponse des appareils. L’emploi de la méthode des mesures stratifiées peut fournir des estimations des émissions totales produites par des usines nettement moindres que les estimations basées sur la méthode de mesure en présence ou en l’absence de fuites.

Équations de corrélation des valeurs de dépistage des débits de fuite selon l’EPA

Dans le cas de cette méthode d’estimation des débits de fuite, l’expérience acquise par l’industrie dans certaines conditions d’exploitation de pièces et éléments précis permettrait l’emploi d’équations de corrélation directe pour calculer un débit d’émission d’après les valeurs indiquées par l’appareil de mesure pour une pièce ou un élément. Par exemple, il est possible de calculer avec un analyseur de vapeurs organiques (AVO) le débit de fuite d’une soupape telle qu’employée dans les circuits gazeux de l’IFPCOS (les débits de gaz étant exprimés en ppmv), au moyen de l’équation suivante :

\[
LR = 4,4 \times 10^6 \text{ (valeur indiquée par l'instrument, corrigée) } 0,79
\]

En employant les équations de corrélation, on peut calculer les fuites totales en fonction d’un certain nombre de pièces et d’éléments.

Équations de corrélation des valeurs de détection du débit de fuite précis d’une usine donnée

Cette méthode d’estimation est celle qui se rapproche le plus de la mesure des émissions réelles totales produites par une usine donnée. Elle exige une détection et des mesures exhaustives des fuites, de sorte que l’on puisse représenter graphiquement les lectures de l’appareil de mesure pour les types de pièces et d’éléments employés dans diverses conditions d’exploitation, en fonction des débits de fuite mesurés, et que l’on puisse recueillir suffisamment de données pour assurer une validité statistique aux équations de corrélation dérivées.

Pour mesurer les débits de fuite réels des pièces et des éléments, on suit un procédé connu sous le nom d’emballage des pièces et des éléments. Ce procédé consiste à emballer totalement une pièce ou un élément, et à mesurer le débit de fuite.
Deux méthodes d'emballage sont couramment employées :

La méthode sous vide ou méthode de dilution – La pièce ou l'élément sujets à des fuites est mis sous emballage hermétique, et un courant d'air correspondant au débit de fuite est recueilli sous vide et maintenu pendant les mesures de la pression. On mesure le débit et on analyse la composition du courant produit par les fuites.

La méthode du courant gazeux – On embaie la pièce ou l'élément, et on envoie un courant d'azote. On recueille un échantillon du mélange que contient le sac.

On conseille à l'utilisateur de se renseigner sur la façon de procéder auprès de spécialistes de l'emballage du matériel, ou bien de faire exécuter ce travail à contrat.

Mesures du débit de fuite dans un secteur localisé

Il existe des cas dans lesquels on doit surveiller les fuites dans tout un circuit de traitement. Si l'on n'observe aucune fuite, on peut considérer tout le matériel contenu et tous les éléments et pièces comme non sujets à des fuites. Il est également faisable de contrôler rigoureusement quelques systèmes de ventilation des secteurs industriels et d'établir des circuits de gaz brûlés pour surveiller le débit et la composition de ces courants gazeux et ainsi calculer le débit massique total d'émission. Il est préférable de surveiller continuellement les émissions venant d'un circuit de traitement industriel ou d'un bâtiment, au lieu de chercher à employer la méthode d'emballage ou la méthode d'isolement et de mesure non répétés.
Appendice E
Variables de la détection des fuites

Le rendement et la précision du processus de détection des fuites dans un site d’usine dépendent d’un certain nombre de facteurs. Absolument tous les facteurs énumérés ont eu un impact plus ou moins prononcé sur les résultats. L’utilisateur du matériel de détection des fuites est avisé de passer en revue les détails suivants avant d’effectuer toute mesure, pour pouvoir évaluer et classer comme fiables les données recueillies :

- le facteur de réponse des espèces chimiques ou du mélange chimique qui sont mesurés;
- la température à laquelle sont effectuées les mesures;
- les variables physiques associées à la mesure des fuites, comme la pression en arrière de la fuite, la dimension du trou ou la porosité de la pièce ou de l’élément sujet à des fuites;
- les effets du vent pendant l’échantillonnage;
- un positionnement incorrect de la sonde d’échantillonnage;
- les interférences par d’autres éléments proches, sujets à des fuites, qui influencent les niveaux de fond;
- l’accessibilité aux pièces et éléments à échantillonner;
- l’interférence par des gaines isolantes;
- les erreurs d’étalonnage des appareils;
- le mauvais fonctionnement des appareils;
- un long temps de réponse des appareils;
- la précision de l’échelle instrumentale;
- les sondes et poignées sujettes à des fuites, les sondes obturées et des gouttelettes d’huile dans la sonde.

Appareils de contrôle et de surveillance
Critères de performance des appareils

Les critères applicables aux appareils de contrôle et de surveillance, de performance satisfaisante, sont précisés à l’appendice F.

Pour de nombreuses usines de produits chimiques, l’AVO est l’appareil de choix. Pour les raffineries de pétrole, un détecteur de combustion catalytique TLV est parfois préféré.

- L’appareil doit pouvoir mesurer la concentration minimale correspondant à la définition d’une fuite, c’est-à-dire 10 000 ppmv. Pour une étude plus poussée des limites des mesures, voir l’appendice J.
- L’appareil doit avoir une précision d’étalonnage égale ou inférieure à 10 p. 100 de la valeur d’étalonnage pour la mesure des concentrations de gaz.
- L’appareil doit avoir un temps de réponse assez rapide, c’est-à-dire de moins de 30 secondes.
- L’appareil doit être à sécurité intrinsèque.
Descriptions des appareils
Les appareils de dépistage actuellement disponibles sont les suivants :

- déTECTeur à ionisation de flamme (DIF);
- déTECTeur à photo-ionisation (DPI);
- déTECTeur par spectrométrie d’absorption non dispersive dans l’infrarouge (DSANDI);
- déTECTeur à combustion catalytique ou à conductivité thermique (DCC).

Les caractéristiques des appareils sont comparées au tableau E-1.

DétECTeur à ionisation de flamme
Avec cet appareil, l’échantillon est introduit dans une flamme d’hydrogène, dans laquelle les vapeurs organiques sont ionisées. Un collecteur chargé positivement entoure la flamme, et le flux d’ions entre la flamme et le collecteur est mesuré électroniquement. On établit habituellement les analyseurs DIF avec du gaz méthane en concentrations normalisées.

DétECTeur à photo-ionisation
Cet appareil utilise la lumière ultraviolette pour ioniser les vapeurs organiques. Le potentiel d’ionisation de la plupart des composés organiques est inférieur à l’énergie d’ionisation de la lampe ou de la source d’énergie. La réponse du détecteur varie selon les groupes fonctionnels du composé organique soumis au dépistage.

DétECTeur par spectrométrie d’absorption non dispersive dans l’infrarouge
Cet appareil fait appel au principe des caractéristiques d’absorption de la lumière, que manifestent certains gaz à des longueurs d’onde précises. La concentration du produit chimique dosé présente une corrélation directe avec la quantité de lumière absorbée.

DétECTeur à combustion catalytique ou à conductivité thermique
On emploie la chaleur de combustion d’un gaz donné pour doser le gaz en question. Celle-ci ne représente pas une réponse précise d’un produit chimique, mais elle peut aider à doser un gaz combustible lorsque le type de gaz libéré par une fuite est connu.

Protocole des mesures
La méthode 21 de l’EPA, décrite à l’appendice F du présent Code, indique de façon détaillée une méthode de mesure des fuites de composés organiques volatils avec des appareils portatifs antidéflagrants. Cette méthode comporte des spécifications et des critères de performance applicables aux analyseurs appropriés. Elle est également basée sur la définition de fuite; selon cette définition, une fuite est une émission gazeuse générant des concentrations locales qui, lues par l’instrument de mesure, sont égales ou supérieures à la valeur relevée pour un composé de référence, par exemple le méthane (10 000 ppmv). Cette méthode sert à la localisation et à la classification des fuites, mais pas à la mesure des débits massiques d’émissions à partir de sources individuelles.

La méthode 21 décrit précisément comment procéder à l’échantillonnage des fuites et placer la sonde, et la durée maximum requise d’échantillonnage au site de réponse. Les méthodes permettant de calculer la lisibilité de l’instrument, son temps de réponse et la précision de son étalonnage sont aussi indiquées.

La méthode 21 comprend aussi la description d’un autre procédé de détection des fuites, basé sur la formation de bulles après application d’une solution savonneuse à l’emplacement des sources potentielles de fuite.
<table>
<thead>
<tr>
<th>Appareils de contrôle et de surveillance</th>
<th>Conductivité thermique ou chaleur de combustion</th>
<th>Formaldehyde, tétrachlorure de carbone</th>
<th>Hexane</th>
<th>A envisager pour les raffineries de pétrole</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCC</td>
<td>Absorption de la lumière à des longueurs d'onde précises</td>
<td>Essence, naphtha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSANDI</td>
<td>Substances ionisées par la lumière ultraviolette</td>
<td>Hydrocarbures chlorés, composés aromatiques, aldéhydes, formaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPI</td>
<td>Teneur totale en carbone</td>
<td>Composés aliphatiques et aromatiques, simples</td>
<td>1 - 20</td>
<td>H2O, CO2</td>
</tr>
<tr>
<td></td>
<td>Applicables aux</td>
<td>Composés aliphatiques fortement halogénés, comme le chloroforme, le tétrachlorure de carbone, le formaldehyde</td>
<td>0 - 10 000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non applicables aux</td>
<td>Gamme, ppmv</td>
<td>1 - 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gaz d'étalementnage</td>
<td>Méthane</td>
<td>0 - 2 000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interférence</td>
<td>O2 à moins de 4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remarques</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarques
- Teneur totale en carbone
- Composés aliphatiques et aromatiques, simples
- Composés aliphatiques fortement halogénés, comme le chloroforme, le tétrachlorure de carbone, le formaldehyde
- Gamme, ppmv: 1 - 200
- Méthane: 0 - 2 000
- O2 à moins de 4%
- Remarques: A envisager dans les cas où des DIF ou des DCC ne peuvent être utilisés.
Appendice F
Protocole des mesures

Appendice G
Guide des normes relatives au matériel

À mesure que sont introduits de nouveaux règlements sur les émissions aux États-Unis, on observe une réponse très positive de la part des fournisseurs de matériel (Chemical Engineering, 1991; Adams, W.V., 1991; Brestel, R. et al., 1991). De nouvelles séries de matériel sont spécialement créées pour satisfaire aux critères de performance applicables à de très faibles débits de fuite ou à des fuites nulles. Il est par conséquent justifié que les exploitants documentent la performance des types précis de matériel pour identifier le matériel de performance supérieure. On pourra ainsi promouvoir une mise au point rapide des normes industrielles dans le but d'établir des normes concernant les achats de matériel et les protocoles d'entretien.

Les propriétaires d'usines sont encouragés à demander aux fournisseurs de matériel de participer à une identification systématique des «mauvais joueurs» et à déployer des efforts concertés pour élaborer une technologie améliorée de fabrication du matériel qui permette de réduire les fuites dans les nouvelles installations.

Il est important d'identifier les variables techniques critiques telles que la pression, la température, le pH et la corrosivité, et de déterminer les sources d'érosion et de défaillances mécaniques, puisque ceci aidera l'industrie et ses fournisseurs à respecter les exigences relatives à la performance.

Pour l élaboration de la nouvelle technologie, on doit tenir compte des priorités suivantes :
- le bon fonctionnement du matériel;
- la sécurité et les mesures préventives contre les incendies, sur le site de l’usine;
- la fiabilité du fonctionnement du matériel;
- les exigences en matière de sûreté intégrée;
- l'accès facile au matériel, aux fins d'entretien de ce matériel.

Soupapes

Par le passé, on a identifié les soupapes comme constituant une source significative des fuites subies par le matériel. En partie, la raison en est le très grand nombre de soupapes pouvant être installées dans un circuit industriel en présence d'une très vaste gamme de conditions d'exploitation, parfois très rigoureuses. Les soupapes de réglage peuvent avoir de très grandes fréquences de cycles d'exploitation.

Les enquêtes passées sur l'industrie ont indiqué une fréquence excessive de fuites à partir de soupapes; certains programmes d'essai préliminaire des soupapes ont révélé des taux d'échec atteignant parfois 25 p. 100 dans des conditions rigoureuses de fonctionnement. Ces situations ont entre-temps été corrigées. Dans une récente publication (Chemical Engineering, 1991) sont signalées d'importantes améliorations de la conception des soupapes industrielles, avec l'installation de soupapes rotatives, de soupapes à tiroir, de soupapes à clapet oscillant, de soupapes à papillon, de soupapes à bille, de soupapes à membrane et de soupapes à charnière. De nouveaux modèles sont présentés, qui permettront aux garnitures, pressse-étoupe, vannes à soufflet et pièces en plastique de mieux résister à des conditions rigoureuses d'exploitation et à des températures plus élevées. Les améliorations apportées à la conception des détails mécaniques sont notamment l'introduction d'électrovannes à fermeture plus douce, de fermetures étanches à sûreté intégrée, de modes d'accès immédiat aux fôtretten, de garnitures doubles avec orifices de détection des fuites, et de quelques nouveaux assemblages complexes de soupapes de régulation du débit et de contrôle à distance des processus industriels.
On a étudié avec attention les garnitures des soupapes dans le cas des soupapes à tiroir et des soupapes rotatives. Les principales améliorations apportées à la conception consistaient à :

- prévenir l’extrusion des garnitures hors des secteurs des garnitures par l’installation d’anneaux pliables anti-extrusion de part et d’autre des garnitures ;
- conserver l’alignement des tiges de soupapes avec les manchons de tiges installées près de la garniture ;
- minimiser les effets négatifs de la sollicitation aux chocs thermiques en n’employant que la quantité minimum de garniture nécessaire pour former un joint étanche ;
- imposer une contrainte constante et convenable à la garniture, avec ressorts sous charge dynamique, appropriée au type de soupape et au système de garniture utilisé. Certains fournisseurs insistent sur l’emploi d’une clé dynamométrique pour appliquer un couple précis lors du boulonnage des assemblages de garnitures.

Il existe divers matériaux et assemblages composites de garnitures. On doit communiquer avec les fournisseurs pour toute recommandation à propos d’une utilisation particulière.

- Protéger les tiges de soupapes de tout dommage physique et de toute corrosion pour garder un bon joint d’étanchéité.

Pompes et garnitures d’étanchéité

Les pompes sont sujettes à des fuites relativement fréquentes. Elles exigent une surveillance fréquente et des efforts d’entretien considérables pour assurer de faibles niveaux d’émissions.

On dispose d’une large gamme de modèles de pompes pour une grande diversité d’usages. La sélection d’un modèle de pompe est une tâche hautement spécialisée, qui est surtout du ressort des ingénieurs de l’usine et des fournisseurs de pompes.

Il est généralement convenu que les garnitures simples d’étanchéité pour pompes sont très satisfaisantes pour certains emplois et sont préférables aux garnitures pressées. Certaines applications peuvent exiger l’emploi de doubles garnitures mécaniques d’étanchéité et d’un liquide barrière entre les doubles garnitures d’étanchéité. Le liquide barrière doit être compatible avec le fluide de traitement parce qu’une partie du premier peut fuir dans le circuit de traitement. Tout système de barrière doit être relié par un événement à un système de con-
trôler des COV ou être évacué dans un circuit de traitement, de façon à ce que les émissions de COV provenant du liquide barrière soient minimales.

Adams présente les résultats d’un relevé, effectué en 1990, de 107 garnitures étanchéité de pompe utilisées en présence d’hydrocarbures liquides dans trois raffineries du bassin de Los Angeles. Les études qui ont suivi ce relevé, et qui ont révélé une proportion de 9 p. 100 de pièces sujettes à des fuites (> 10 000 ppmv), nous ont amenés aux conclusions suivantes :

Δ peu de garnitures d’étanchéité sont sujettes à des taux de fuites anormaux et ces fuites peuvent facilement être identifiées et corrigées;

Δ lorsque les garnitures d’étanchéité sont sujettes à des taux excessifs de fuites, ceci est un symptôme direct d’une mise en place incorrecte ou d’une utilisation incorrecte de ces garnitures d’étanchéité ou de leurs éléments rotatifs associés;

Δ il existe une étroite corrélation entre le taux de fuites de la garniture d’étanchéité et le temps moyen écoulé jusqu’à la défaillance de ses éléments connexes.

De récentes études ont démontré que l’un des facteurs contribuant à la rupture des garnitures d’étanchéité pour pompes était la vibration ou déflexion de l’arbre de la pompe. On dispose maintenant de nouvelles pompes qui auraient de faibles débits d’émission, même avec des garnitures d’étanchéité simples. Il serait intéressant d’installer ces types de pompes dans les nouvelles installations, ou en remplacement des anciennes pompes.

Compresseurs

Les exigences relatives aux garnitures d’étanchéité installées sur des compresseurs rotatifs, des compresseurs centrifuges et des compresseurs à piston horizontal sont les mêmes que pour les garnitures étanches de pompe. Les compresseurs rotatifs ou centrifuges sont beaucoup plus faciles à rendre étanches que les compresseurs à piston.

Comme les compresseurs fonctionnent avec du gaz, il est essentiel de bien choisir le liquide barrière pour les garnitures mécaniques doubles d’étanchéité, de façon à éviter toute contamination du circuit gazeux. Les rallonges étant contenues à l’intérieur de gaines fermées dans les compresseurs à piston, il est nécessaire de prévoir la purge des gaz contournant le piston. Le système de purge doit être un système à régulation.

Systèmes de contrôle des surpressions

Si possible, les systèmes de contrôle des surpressions doivent évacuer les gaz par un système à évén fermé, jusqu’à une torche ou jusqu’à un dispositif de réduction des émissions de COV. Lorsque l’évacuation contrôlée des gaz n’est pas autorisée, on peut employer deux autres méthodes de réduction des émissions fugitives, qui consistent :

Δ à installer un disque de rupture en amont de la soupape de surpression, réglé à une pression plus élevée que cette soupape. Ce système réduit les émissions fugitives, mais une fois le disque rompu, il faut remettre le système en état aussi rapidement que possible.

Δ à installer les soupapes de surpression en parallèle avec un système de robinetterie assurant le fonctionnement du second système dans toutes les conditions, quand la soupape sujette à des fuites est fermée. Ce dispositif permet des réparations en ligne des soupapes de surpression. Il est interdit d’installer une vanne d’arrêt en face d’une soupape de surpression, selon les règles de sécurité, sauf si un système de blocage infaillible à chaine est approuvé, comme exigé dans le cas d’un système parallèle de soupapes doubles.
Les soupapes de surpression à évacuation ouverte doivent être munies de gaines flexibles, facilement é tirables, au-dessus de l’orifice d’évacuation, pour empêcher l’entrée d’eau de pluie, et ensuite le gel ou la corrosion. La gaine flexible peut aussi servir d’indicateur des fuites à partir de soupapes de surpression.

Brides

Si possible, les conduites et les raccords sont rattachés par soudage. Toutefois, pendant le fonctionnement d’une usine de produits chimiques, une partie du matériel doit souvent être enlevée à des fins de nettoyage et d’entretien, et des brides sont nécessaires.

Les raccords à bride doivent être installés de sorte que les faces des brides soient parallèles et alignées, et qu’ainsi aucune force excessive ne soit nécessaire pour effectuer le boulonnage et atteindre un bon degré d’étanchéité des garnitures. Il est préférable de choisir des surfaces d’étanchéité à faces surélevées et à sillons concentriques, et non des surfaces à faces lisses. On doit boulonner les raccords à bride en employant une clé dynamométrique pour assurer l’application d’une charge uniforme sur les faces du joint d’étanchéité ou de la bride. On doit à nouveau appliquer un moment de torsion aux brides utilisées dans des conditions de température élevée, lorsqu’elles ont atteint la température d’exploitation.

On doit choisir avec soin les éléments des joints d’étanchéité pour satisfaire aux exigences du fonctionnement dans les conditions de service. On doit utiliser un nouveau joint d’étanchéité toutes les fois qu’une bride est réinstallée.

Avant de procéder au boulonnage, on doit vérifier si les boulons sont bien alignés. On doit identifier puis rejeter les boulons endommagés par des déformations.

Tubulures d’échantillonnage

Il est recommandé de procéder à une vidange et à un échantillonnage en circuit fermé, et aussi d’employer des échantillonneurs mobiles, de façon à pouvoir renvoyer à leur point d’origine les échantillons non utilisés, au moment de l’échantillonnage ultérieur. Il est aussi recommandé de faire appel à une méthode d’échantillonnage avec bouchon rétractable, pour éviter la purge des conduites lors de l’échantillonnage du réservoir.

Conduites ouvertes

Les conduites ouvertes comportent généralement des conduites de drainage des réservoirs et des canalisations, des tuyaux de purge pour les hublots de regard du niveau et les cuves à niveau constant, et des tubulures d’échantillonnage. Chaque conduite ouverte doit être obturée avec un couvercle, un bouchon d’arrêt ou une bride feinte lorsqu’elle n’est pas utilisée. Selon la réglementation du Texas Air Control Board, à l’exception des soupapes de surpression, on ne doit installer ni faire fonctionner aucune soupape à l’extrémité d’un tuyau ou d’une canisation contenant des COV, sauf si le tuyau ou la canisation est rendu étanche par une seconde soupape, une bride feinte, un bouchon ou un couvercle. On ne peut enlever le dispositif d’étanchéité que pour prélever un échantillon ou pour effectuer des opérations d’entretien.
Appendice H
Programmes d’amélioration de la qualité

Gestion totale de la qualité

On définit la gestion totale de la qualité (GTQ) comme un ensemble d’activités de perfectionnement continu des procédés auxquelles participent tous les membres d’une organisation. Les cadres et les employés collaborent de façon totalement intégrée à l’amélioration du rendement à tous les niveaux. La méthode d’amélioration continue de la qualité est recommandée pour les programmes visant à réduire les émissions fugitives de COV.

Application de la GTQ à la réduction des EFV

On a cité six principales raisons d’appliquer un programme d’amélioration de la qualité (PAQ) aux efforts de réduction des fuites subies par le matériel dans les raffineries de pétrole, les usines de produits chimiques organiques ou toute industrie dans laquelle sont manipulés des COV. Ce sont :

- les mesures de sécurité dans les usines, visant à réduire les explosions et les incendies;
- la santé des travailleurs et de la collectivité;
- la fiabilité des procédés;
- le respect de la réglementation;
- l’image de marque de la collectivité et l’esprit d’initiative des sociétés;
- la réduction des pertes au cours des processus industriels, donc une plus grande rentabilité.

Définition d’un programme d’amélioration de la qualité

La réalisation d’un PAQ exige la collecte de données et l’analyse des variables caractérisant les soupapes, des essais de performance, des garanties de qualité et des démonstrations des perfectionnements réalisés. Il est nécessaire de disposer d’information précise sur la conception des soupapes, les matériaux de construction, les garnitures d’étanchéité, le type d’utilisation, et les résultats des essais de performance des systèmes de dépistage des fuites. L’un des objectifs consiste à identifier les types de soupapes et les conditions assurant un fonctionnement conforme à la réglementation. C’est ce que l’on définit comme « des technologies assurant une performance supérieure des soupapes ». Cet effort a permis d’identifier et de remplacer des pièces et des éléments continuellement sujets à des fuites « à répétition ».

Comme incitation à choisir cette méthode de préférence à la DFRM, le PAQ offre la possibilité de poursuivre les activités d’exploitation industrielle même si la fréquence des fuites dans certains éléments et pièces est contraire aux normes. On admet qu’à long terme, le remplacement des pièces et des éléments défectueux est la solution permanente pour remédier aux fuites.

À titre d’exemple, pour les soupapes, il existe deux types de PAQ : l’un consiste à faire la démonstration sur le plan de réduction du pourcentage de soupapes sujettes à des fuites et l’autre, à passer en revue la technologie des soupapes et à appliquer le programme visant à réparer une fois pour toutes les soupapes sujettes à des fuites ou à remplacer les soupapes par des pièces de meilleure performance.

Finalement, un PAQ devrait permettre d’élaborer des normes minimales de conception pour chaque type de pièce et d’élément à usage industriel, pour les procédés d’essai au banc de pièces et d’éléments précis et les procédés de contrôle de la qualité à l’intention du secteur chargé des acquisitions, et pour les activités d’entretien.
PAQ volontaire

On peut mettre en pratique à tout moment la méthode de prévention des EFV.

Les sites industriels peuvent choisir de réaliser un PAQ pour garantir que les normes de performance en matière de prévention des EFV sont respectées. Dans ce cas, la portée et la méthode de mise en pratique du programme dépendront de l'objectif fixé par la direction et il ne sera pas nécessaire de soumettre les détails de ce programme à l'autorité compétente.

PAQ imposé

Un PAQ imposé est une façon qualitative d'aborder les réductions des EFV, prescrite par l'autorité compétente.

On peut mettre en place un PAQ imposé lorsque l'usine a connu deux cycles consécutifs de non-conformité aux exigences de la partie 3 du présent Code.

La portée des objectifs du programme est soumise à l'organisme de réglementation et la vérification des progrès accomplis est faite régulièrement. Parfois, le PAQ ne s'applique qu'à l'appareil pour lequel les objectifs d'amélioration des éléments les plus sujets à des fuites n'ont pas été atteints pendant les deux derniers cycles complets de contrôle et de surveillance.
Appendice I
Expérience acquise par les États-Unis

La technologie des mesures et de la réduction des émissions fugitives (résultant de fuites à partir du matériel) est documentée aux États-Unis depuis 1939. Dès 1978, un ensemble significatif de réglements fédéraux était déjà mis en place. Une forte augmentation du nombre de réglements a eu lieu pendant les années 1980 avec l’élaboration de la Clean Air Act (CAA) par l’EPA.

Des normes intitulées National Ambient Air Quality Standards (NAAQS) ont été publiées et des normes intitulées New Source Performance Standards (NSPS) ont été promulguées.

En 1988, un inventaire intitulé Toxic Release Inventory (TRI) a été achevé. Il a été estimé qu’environ 50 p. 100 des émissions atmosphériques avaient pour origine des sources d’émrisions fugitives.

Aux termes de cette loi, les installations concernées doivent quantifier, en fonction de chacun des produits chimiques présents, les rejets de produits chimiques toxiques dans l’environnement, notamment les émissions fugitives.

Aux États-Unis, la coutume est que les organismes fédéraux, comme l’EPA, préparent des lois et les soumettent au Congrès en vue de leur adoption. L’administration de divers États et les pouvoirs locaux promulguent parfois des lois supplémentaires, et procèdent à la mise en application des règlements en vertu de leur pouvoir en matière d’autorisations.

Les règlements des différentes juridictions se contredisent parfois. On évite ces contradictions en appliquant toujours le règlement le plus strict.

La réglementation américaine au niveau fédéral, au niveau des États et au niveau des municipalités est très détaillée malgré l’objectif négocié de la technologie des mesures de contrôle maximum possible. Il est très clairement expliqué comment se conformer aux règlements, et des plans détaillés sont habituellement mis en œuvre pour atteindre la conformité à ces règlements.
Notons que les règlements en vigueur aux États-Unis mentionnent le plus souvent des produits chimiques précis, et font référence à des émissions dangereuses plutôt qu’au terme plus général de COV employé dans le présent Code.

Un exemple des règlements qui, au Texas, s’appliqueraient aux émissions fugitives est présenté au tableau I-1. L’importance des règlements du Texas vient de ce qu’ils sont les plus avancés, parce qu’ils couvrent les émissions produites par les raffineries de pétrole. La juridiction Texas Air Control Board (TACB) s’applique à 254 comtés, dont 20 se trouvent dans des secteurs où les normes sur les concentrations d’ozone ne sont pas respectées.

<table>
<thead>
<tr>
<th>TABLEAU I-1 RÉGLEMENTATION DU TEXAS TELLE QU’APPLIQUÉE AUX ÉMISSIONS DE COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrie</td>
</tr>
<tr>
<td>Industrie de fabrication de produits chimiques organiques</td>
</tr>
<tr>
<td>NSPS VV NESHAP F NESHAP J MACT</td>
</tr>
<tr>
<td>Gouvernement fédéral</td>
</tr>
<tr>
<td>Autorisation du TACB</td>
</tr>
<tr>
<td>Comté</td>
</tr>
<tr>
<td>Harris</td>
</tr>
<tr>
<td>Raffineries de pétrole</td>
</tr>
<tr>
<td>NSPS GGG NESHAP J MACT</td>
</tr>
<tr>
<td>Gouvernement d’État</td>
</tr>
<tr>
<td>Autorisation du TACB</td>
</tr>
<tr>
<td>Comté</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>Usines de traitement du gaz naturel venant de gisements extracôtiers</td>
</tr>
<tr>
<td>NSPS KKK</td>
</tr>
<tr>
<td>Gouvernement d’État</td>
</tr>
<tr>
<td>Autorisation du TACB</td>
</tr>
<tr>
<td>Comté</td>
</tr>
<tr>
<td>Harris</td>
</tr>
</tbody>
</table>

Le Texas réalise ses plans en mettant en œuvre la nouvelle technologie des mesures de contrôle maximum possible des émissions (MACT). Il atteint les objectifs de prévention des émissions gazeuses fugitives par l’emploi du matériel antipollution ou par un travail fréquent d’inspection et d’entretien. On ne peut parvenir à une réduction des émissions que par le contrôle et la surveillance du matériel. La surveillance des taux de polluants dans le milieu ambiant n’est pas acceptée comme solution de remplacement. L’autorisation accordée est fondée sur la prévention des émissions.

Réglementation des États-Unis

National Emission Standards for Hazardous Air Pollutants (EPA)

- de procéder à une mise en place progressive des soupapes et des pompes;
- d’associer la fréquence des efforts de surveillance à la performance, et d’inciter les industries à employer du matériel générant peu d’émissions et à réduire les EFV;
- d’entreprendre un programme d’amélioration de la qualité pour assurer le remplacement du matériel à faible performance, ou l’utilisation de tous les éléments de la MACT, ou les deux à la fois.
Les règlements s'appliquent aux installations de l'IFPCOS et aux appareils industriels existants et nouveaux qui pourraient employer les produits chimiques énumérés à l'appendice B du présent Code.

Les règlements s'appliquent au matériel employé dans des circuits de traitement contenant 5 p. 100 ou plus de polluants atmosphériques dangereux volatils (PADV). Le matériel fonctionnant moins de 300 heures annuellement en est exempté. Les usines comportant moins de 250 soupapes doivent être inspectées au plus tous les trois mois.

Les processus industriels qui ont lieu en milieu clos ou dans des bâtiments sous pression négative et au cours desquels les gaz sont évacués dans l'atmosphère avec un dispositif de régulation efficace à 95 p. 100, sont exemptés des inspections aux fins de DFRM.

Dans le cas des traitements par lots, il est possible de répartir la fréquence des opérations de surveillance selon la durée d'exploitation, quand le matériel est fonctionnel en présence de PADV ou est employé avec un COV de remplacement ou tout autre composé décelable.
Appendice J
Explication des limites des mesures

En consultant le tableau E-1 (voir Appendice E), on constate que les détecteurs à ionisation de flamme, à photo-ionisation et à combustion catalytique couvrent la gamme de 1 à 10 000 ppmv du gaz de référence. La limite de sensibilité du détecteur à photo-ionisation est indiquée comme étant de 2 000 ppmv, mais avec une sonde à dilution, elle peut passer à 10 000 ppmv.

Il est peu probable que les appareils aient une échelle de précision satisfaisante, plus sensible que 10 ppmv. Cette valeur représente le niveau de fond généralement attribué à l'atmosphère en l'absence de contaminants. En outre, il est possible que les facteurs de réponse des appareils soient médiocres au-dessous de 100 ppmv. En conséquence, on considère généralement l'intervalle de 0 à 100 ppmv comme la plus basse gamme de valeurs détectables.

Appendice K
Enregistrement des données et établissement de rapports

Il est recommandé d'établir des rapports brefs, qui suffisent pour démontrer clairement la conformité aux objectifs du Code.

Toute estimation des émissions avec des facteurs propres à l'IFPCOS, en l'absence de relevés de dépistage, est considérée comme invalide et n'indiquant pas les réductions réelles des émissions fugitives de COV. Un relevé initial de dépistage - par la méthode stratifiée de classification des fuites - suivi de relevés ultérieurs du même type à des intervalles raisonnables de temps, peut servir de base pour les estimations de la réduction des émissions.

Fiche proposée de rapport sommaire

Il est recommandé d'effectuer les rapports en employant les fiches contenus dans le présent appendice. Ceci assurera l'uniformité de la présentation des rapports.

Partie 1 Programme de prévention des EFV, rapport sommaire (Tableau K-1)
Partie 2 Programme de prévention des EFV, feuille de rapport sommaire sur la surveillance des pièces et des éléments (Tableau K-2)
Partie 3 Programme de prévention des EFV, feuilles d'estimation des émissions (Tableaux K-3 à K-9)

Le personnel de l'usine doit conserver des fichiers de sauvegarde à l'appui des rapports sommaires, pour que l'autorité compétente dispose d'information détaillée dès qu'elle en fait la demande.

Les données doivent être conservées pendant au moins trois ans.
TABLEAU K-1 ÉMISSIONS FUGITIVES DE COV – RAPPORT SOMMAIRE

<table>
<thead>
<tr>
<th>Société</th>
<th>ABC CHEMICAL</th>
<th>Date</th>
<th>3 FÉVRIER 1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propriété/Procédé</td>
<td>SYN-EX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personne-ressource</td>
<td>BILL GOOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Téléphone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Télécopieur</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rendement théorique 16 250 TONNES/AN

Performance enregistrée

<table>
<thead>
<tr>
<th>Année</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total des pièces et des éléments</td>
<td>7 064</td>
</tr>
<tr>
<td>Débit de fuite, en pourcentage</td>
<td>0,25</td>
</tr>
<tr>
<td>Débit massique d'émission, en ktonnes/an</td>
<td>30,6</td>
</tr>
</tbody>
</table>

Surveillance et contrôle réalisés : _ sur place _ forfait _ par téléphone

Consultant : Nom __________ Adressse __________

Période de contrôle et de surveillance : JUILLET - AOÛT

Commentaires : POURSUITE D’UN PROGRAMME CONTINU DE REMPLACEMENT DES SOUPAPES

Détails connexes :

<table>
<thead>
<tr>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titre</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>
TABLEAU K-2 ÉMISSIONS FUGITIVES DE COV – FEUILLE DE RAPPORT SOMMAIRE SUR LA SURVEILLANCE DES PIÈCES ET DES ÉLÉMENTS

<table>
<thead>
<tr>
<th>Commentaires</th>
<th>Estimation du total des émissions (Kg/an)</th>
<th>DÉBIT DE FUITE DES PIÈCES ET DES ÉLÉMENTS TESTÉS 18/7 064 = 0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 058</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre de pièces et d'éléments</th>
<th>Sans fuites</th>
<th>Avec fuites</th>
<th>Encastré</th>
<th>Remplacé</th>
<th>Ecarté pour réparation ou remplacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non inspecté</td>
<td>1 403</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Inspecté</td>
<td>1 396</td>
<td>63</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types de pièces et d'éléments</th>
<th>Soupapes</th>
<th>Gaminures étañches de pompe</th>
<th>Gaminures étañches de pope</th>
<th>Soupapes de sûreté</th>
<th>Brides</th>
<th>Conduites ouvertes</th>
<th>Tubulures d'échantillonnage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juillet-aout 1991</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Juillet-aout 1991</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Juillet-aout 1991</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Juillet-aout 1991</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Juillet-aout 1991</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totaux</th>
<th>0</th>
<th>7 064</th>
<th>7 046</th>
<th>1991</th>
</tr>
</thead>
</table>

SYN.EX
<table>
<thead>
<tr>
<th>Méthode 1</th>
<th>Mesures stratifiées</th>
<th>Gaz/vapeur</th>
<th>Strate 1</th>
<th>690</th>
<th>0,000 14</th>
<th>7 920</th>
<th>765</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strate 2</td>
<td>53</td>
<td>0,001 65</td>
<td>7 920</td>
<td>693</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strate 3</td>
<td>5</td>
<td>0,045 1</td>
<td>7 920</td>
<td>1 786</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquide léger</td>
<td>Strate 1</td>
<td>586</td>
<td>0,000 28</td>
<td>7 920</td>
<td>1 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strate 2</td>
<td>14</td>
<td>0,009 63</td>
<td>7 920</td>
<td>1 068</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strate 3</td>
<td>2</td>
<td>0,085 2</td>
<td>7 920</td>
<td>1 350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquide dense</td>
<td>Strate 1</td>
<td>49</td>
<td>0,000 23</td>
<td>7 920</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strate 2</td>
<td>4</td>
<td>0,000 23</td>
<td>7 920</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strate 3</td>
<td>0</td>
<td>0,000 23</td>
<td>7 920</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Méthode 2</th>
<th>Corrélation précise des appareils</th>
<th>Gaz/vapeur</th>
<th>Liquide léger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Méthode 3</th>
<th>Corrélation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autre</th>
<th>(préciser)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th></th>
<th>1 403</th>
<th>7 058</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de matériel : Garnitures étanchéité de pompe</td>
<td>Méthode 1</td>
<td>Méthode 2</td>
<td>Méthode 3</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Compte</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strate 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strate 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strate 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesures stratifiées Liquide léger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesures stratifiées Liquide dense</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée d'exploitation (heures/an)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation des émissions (kg/an)</td>
<td>596</td>
<td>1 327</td>
<td>6 922</td>
</tr>
<tr>
<td>Facteur d'émission (kg/h/source)</td>
<td>0,00198</td>
<td>0,0035</td>
<td>0,437</td>
</tr>
<tr>
<td>Total</td>
<td>10 090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type de matériel : Garnitures d'étanchéité pour compresseurs</td>
<td>Estimation des émissions (kg/an)</td>
<td>Durée d'exploitation (heures/an)</td>
<td>Facteur d'émission (kg/h/source)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>359</td>
<td>7 920</td>
<td>0,011 32</td>
<td>4</td>
</tr>
<tr>
<td>Type de matériel : Soupapes de Surpression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compte</td>
<td>Méthode 1</td>
<td>Méthode 2</td>
<td>Méthode 3</td>
</tr>
<tr>
<td></td>
<td>Mesures stratifiées</td>
<td>Corrélation</td>
<td>Corrélation précise des appareils</td>
</tr>
<tr>
<td></td>
<td>Strate 1</td>
<td>Strate 2</td>
<td>Strate 3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Facteur d'émission (kg/h/source)</td>
<td>0.0114</td>
<td>0.279</td>
<td>1.691</td>
</tr>
<tr>
<td>Durée d'exploitation (heures/an)</td>
<td>7920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation des émissions (kg/an)</td>
<td>542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type de matériel : Brides</td>
<td>Méthode 1</td>
<td>Méthode 2</td>
<td>Méthode 3</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Compte</td>
<td>5475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strate 1</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strate 2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée exploitation (heures/an)</td>
<td>7920</td>
<td>7920</td>
<td>7920</td>
</tr>
<tr>
<td>Facteur d'émission (kg/h/source)</td>
<td>0.000002</td>
<td>0.00875</td>
<td>0.00375</td>
</tr>
<tr>
<td>Estimation des émissions (kg/an)</td>
<td>867</td>
<td>7207</td>
<td>2376</td>
</tr>
</tbody>
</table>
TABLEAU K-8 ÉMISSIONS FUGITIVES DE COV – FEUILLE D’ESTIMATION DES ÉMISSIONS – CONDUITES OUVERTES

<table>
<thead>
<tr>
<th>Type de matériel : Conduites ouvertes</th>
<th>Méthode 1</th>
<th>Méthode 2</th>
<th>Méthode 3</th>
<th>Autre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compte</td>
<td>Strate 1</td>
<td>Strate 2</td>
<td>Strate 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation des émissions (kg/an)</td>
<td>0.00013</td>
<td>0.00876</td>
<td>0.01195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée d’exploitation (heures/an)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facteur d’émission (kg/h/source)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesures stratifiées</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrélation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrélation précise des appareils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(préciser)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0
Appendice L
Exemples d évaluation statistique

Voici, à titre d échantillon, un tableau de valeurs permettant de définir le nombre de pièces ou d éléments à inspecter lorsqu un nombre statistiquement fiable de pièces ou d éléments est soumis à une vérification. Il a été établi avec les deux extrémités de la gamme couvrant 10 000 pièces ou éléments. On peut l élargir au besoin.

Le tableau a été préparé par Duncan McLeod, d Environnement Canada, avec comme cible un pourcentage maximum de 2 p. 100 de pièces ou d éléments sujets à des fuites, pour atteindre un niveau acceptable. Donc, à titre d exemple, le degré de certitude est de 95 p. 100 que 2 p. 100 au maximum de pièces ou d éléments sont sujets à des fuites dans :

a) 10 000 pièces ou éléments, si au plus 12 pièces ou éléments sujets à des fuites sont trouvés dans un échantillon de 1 000 pièces ou éléments pris au hasard;

b) 1 000 pièces ou éléments si au plus deux pièces ou éléments sujets à des fuites sont trouvés dans un échantillon de 300 pièces ou éléments pris au hasard.

NOMBRE MAXIMUM ADMISSIBLE DE PIÈCES OU D ÉLÉMENTS SUJETS À DES FUITEES, DANS UN ÉCHANTILLON, AVEC DÉTECTION D UN TAUX DE 2 P.100 DE PIÈCES OU DÉLÉMENTS DÉFECTUEUX

<table>
<thead>
<tr>
<th>Dimension de l échantillon</th>
<th>Groupe de 1 000 pièces ou éléments</th>
<th>Groupe de 10 000 pièces ou éléments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niveau de confiance*</td>
<td>Niveau de confiance*</td>
</tr>
<tr>
<td></td>
<td>90 %</td>
<td>95 %</td>
</tr>
<tr>
<td>100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>400</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>500</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>1 000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Par «niveau de confiance», on entend le degré de certitude que les résultats obtenus pour les pièces ou éléments de l échantillon seront les mêmes que pour la famille totale de pièces ou d éléments de l unité de fonctionnement (par exemple, le degré de confiance est de 95 p. 100 que le même rapport de pièces ou d éléments sujets à des fuites sera observé, si toutes les sources de fuites sont dépistées).
Appendice M
Bibliographie

Conseil canadien des ministres de l'environnement, Plan de gestion pour les oxydes d'azote (NOx) et les composés organiques volatils (COV), Phase I, novembre 1990.

