GUIDE SUR LA CARACTÉRISATION ENVIRONNEMENTALE DES SITES DANS LE CADRE DE L’ÉVALUATION DES RISQUES POUR L’ENVIRONNEMENT ET LA SANTÉ HUMAINE

VOLUME 4 MÉTHODES D’ANALYSE

PN 1558
ISBN 978-1-77202-033-5 PDF
TABLE DES MATIÈRES

1 INTRODUCTION ... 1

2 DESCRIPTIONS DES GROUPES DE PARAMÈTRES ... 3
 2.1 Groupe des paramètres organiques ... 3
 2.1.1 Composés organiques acides/basiques/neutres (ABN)* extractibles .. 3
 2.1.2 Chlorophénols (CP) et composés phénoliques non chlorés (CPN)* .. 4
 2.1.3 1,4-Dioxane* ... 4
 2.1.4 Glycols .. 4
 2.1.5 Pesticides organochlorés (PO) ... 5
 2.1.6 Composés d’organoétain .. 5
 2.1.7 Acides sulfoniques perfluorés, acides perfluorocarboxyliques et leurs sels* 5
 2.1.8 Pesticides et herbicides (P et H)* .. 6
 2.1.9 Hydrocarbures pétroliers (HCP) .. 7
 2.1.10 Biphényles polychlorés (BPC) .. 7
 2.1.11 Dibenzo-p-dioxines polychlorés/Dibenzofuranes (PCDD/PCDF) .. 7
 2.1.12 Hydrocarbures aromatiques polycycliques (HAP) ... 8
 2.1.13 Trihalométhanes (THM)* .. 8
 2.1.14 Composés organiques volatils I (COV) ... 9
 2.1.15 Composés organiques volatils II : Benzène, Éthylbenzène, Toluène, Xylènes (BTEX) 9
 2.1.16 Paramètres d’analyse des matières organiques individuelles (APR) .. 10

 2.2 Groupe des paramètres inorganiques ... 10
 2.2.1 Métaux .. 10

 2.2.2 Paramètres d’analyse des manières inorganiques individuelles (APR) .. 11

 2.3 Microbiologie ... 11
 2.3.1 Coliformes .. 11

 2.3.2 Cyanobactéries .. 11

3 EXIGENCES DE MANIPULATION ET DE STOCKAGE DES ÉCHANTILLONS .. 12
 Tableau 3A : Exigences de manipulation et de stockage des échantillons de sol et de sédiments 14
 Tableau 3B: Exigences de manipulation et de stockage des échantillons d’eau 15
3.1 Sous-échantillonnage ... 19
3.1.1 Procédure : Sols et sédiments – paramètres inorganiques et autres paramètres réglementés .. 19
3.1.2 Procédure : Sols et sédiment – Paramètres organiques .. 20
3.1.3 Procédure : Échantillons d’eau – Paramètres inorganiques et autres paramètres réglementés .. 21
3.1.4 Échantillons d’eau – Paramètres organiques .. 22
3.1.5 Échantillons biologiques .. 23

4 MÉTHODES D’ANALYSE .. 24
4.1 Groupe des paramètres organiques .. 26
4.1.1 Composés organiques acides/basiques/neutres (ABN) extractibles......................... 26
4.1.2 Chlorophénols (CP) et composés phénoliques non chlorés (CPNC) 27
4.1.3 1,4-Dioxane .. 28
4.1.4 Glycols ... 29
4.1.5 Pesticides organochlorés (PO) ... 30
4.1.6 Composés d’organoétain .. 32
4.1.7 Acides sulfoniques perfluorés, acides perfluorocarboxyliques et leurs sels 33
4.1.8 Pesticides et Herbicides (P et H) .. 34
4.1.9 Hydrocarbures pétroliers (HCP) .. 38
4.1.10 Biphényles polychlorés (BPC) ... 41
4.1.11 Dibenzo-p-dioxines polychlorés/Dibenzofuranes (PCDD/PCDF) 44
4.1.12 Hydrocarbures aromatiques polycycliques (HAP) ... 46
4.1.13 Trihalométhanes (THM) .. 48
4.1.14 Composé organiques volatils I (COV) ... 49
4.1.15 Composés organiques volatils II : Benzène, Éthylbenzène, Toluène, Xylènes (BTEX) ... 51
4.1.16 Paramètres d’analyse des matières organiques individuelles............................... 51

4.2 Groupe des paramètres inorganiques .. 56
4.2.1 Métaux .. 56
4.2.2 Paramètres d’analyse des matières inorganiques individuelles 58

4.3 Microbiologie ... 84
4.3.1 Coliformes ... 84
4.3.2 Cyanobactérie .. 85

5 PRODUCTION DE RAPPORTS ... 87
5.1 Seuils de déclaration par les laboratoires (SDL) ... 87
Tableau 5.1 Seuils de déclaration par les laboratoires – Eau et sols et sédiments 88
5.2 Exigences de déclaration ... 122
5.3 Dilution de l’échantillon .. 123
5.3.1 Analyte non-cible élevé ou interférences dues à la matrice donnant des résultats de SDL au-dessus de l’étalon de référence ... 124

6 EXIGENCES D’ASSURANCE ET DE CONTRÔLE DE LA QUALITÉ (AQ/CQ) 125

6.1 Accréditation .. 125

6.2 Validation de la méthode initiale .. 125
6.2.1 Démonstration initiale de précision, d’exactitude, de sélectivité et de spécificité acceptables ... 125

6.3 Évaluation initiale des limites de détection de la méthode ... 126
6.3.1 Détermination des LDM pour les paramètres additionnés 129
6.3.2 Détermination des LDM ou des SDL pour les paramètres soustrait s 129
6.3.3 Calcul de l’équivalence toxique de la LDM .. 129

6.4 Incertitude relative à la mesure ... 130

6.5 Réévaluation périodique de la performance ... 131

6.6 Échantillons de contrôle de la qualité ... 132

Tableau 6-1: Critères de performance – Composés organiques extractibles en milieu acide/basique/neutre (ABN), Chlorophénols (CP), Perfluorooctanesulfonate (PFOS), Hydrocarbures aromatiques polycycliques (HAP) ... 136

Tableau 6-2 : Critères de performance – 1,4-Dioxane .. 138

Tableau 6-3 : Critères de performance – Diisopropanolamine; Glycols; Nonylphénol et ses éthoxylates; Pesticides organochlorés (PO); Composés d’organoétain; Pesticides et herbicides – Carbamates, Glyphosate, Herbicides du type phénoxy; Biphényles polychlorés; Sulfolane ... 139

Tableau 6-4: Critères de performance – Hydrocarbures pétroliers (HCP) 140

Tableau 6-5: Critères de performance –Dibenzo-p-dioxines polychlorés/Dibenzofuranes 141

Tableau 6-6 : Critères de performance – Composés organiques volatils (COV), Trihalométhanes (THM), BTEX ... 142

Tableau 6-7 : Critères de performance – Fraction de carbone organique (FCO) 144

Tableau 6-8: Critères de performance – Méthylmercure.. 145

Tableau 6-9 : Critères de performance – Ammoniac (total et non ionisé); Chrome, Chrome hexavalent (VI); Cyanure (CN−) .. 146

Tableau 6-10 : Critères de performance – Bore soluble à l’eau chaude (SEC); Chlorure; Fluorure; Mercure; Métaux; Nitrate; Nitrate + Nitrite; Nitrite; Nutriments (TN et TP); Phosphore; Sulfate ... 147

Tableau 6-11 : Critères de performance – Oxygène dissous (OD) 148

Tableau 6-12 : Critères de performance – Conductivité(CE), Salinité 149

Tableau 6-13 : Critères de performance – pH ... 150
Tableau 6-14 : Critères de performance – Couleur (vraie); Composés chlorés réactifs*; Sédiments en suspension (matières totales en suspension); Turbidité; Matières dissoutes totales 151
Tableau 6-15 : Critères de performance – Soufre (élémentaire) ... 152
Tableau 6-16 : Critères de performance – Coliformes totaux, Coliformes fécaux (Escherichia coli)* 153

7 RÉFÉRENCES ... 154

ANNEXES .. 157
Annexe 1 Liste alphabétique des composés / Critères réglementaires / Seuils de déclaration des laboratoires ... 157
Annexe 2 Participants et affiliations ... 185
REMERCIEMENTS

Ce recueil a été préparé aux termes du contrat 524-2012 du CCME octroyé à Maxxam Analytics, Mississauga (Ontario), Canada, avec M. Barry Loescher (Ph. D), chef de projet, et Mme Elizabeth Walsh, réviseure technique. Le recueil a été élaboré suite à une série de douze webinaires tenus en 2012 avec des experts des méthodes d’analyse technique provenant d’organismes environnementaux provinciaux, territoriaux et fédéral, ainsi qu’avec des laboratoires environnementaux privés de l’ensemble du Canada. Il a été révisé de façon approfondie par le Groupe de travail sur les recommandations pour la qualité des sols du CCME. Le temps et l’expertise offerts par tous les participants sont grandement appréciés. Une liste des experts ayant participé et de leur organisme d’attache est incluse à l’annexe 2.
ABRÉVIATIONS ET ACRONYMES

<table>
<thead>
<tr>
<th>Abbréviation</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aire</td>
</tr>
<tr>
<td>AAS</td>
<td>Spectrométrie d’absorption atomique</td>
</tr>
<tr>
<td>ABN</td>
<td>acide basique neutre extractible</td>
</tr>
<tr>
<td>AFFF</td>
<td>Mousse à formation de pellicule aqueuse</td>
</tr>
<tr>
<td>AMPA</td>
<td>2-Amino-3-(5-méthyl-3-oxo-1,2-oxazol-4-yl) acide proprionique</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Analytical Chemists</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>APR</td>
<td>Autres paramètres réglementés</td>
</tr>
<tr>
<td>AQ</td>
<td>Assurance de la qualité</td>
</tr>
<tr>
<td>ASTM</td>
<td>ASTM International (anciennement l’American Society for Testing and Materials)</td>
</tr>
<tr>
<td>ATK</td>
<td>Azote total Kjeldahl</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>B[a]P</td>
<td>Benzo[a]pyrène</td>
</tr>
<tr>
<td>BPC</td>
<td>Biphényle polychloré</td>
</tr>
<tr>
<td>BSEC</td>
<td>Bore soluble à l’eau chaude</td>
</tr>
<tr>
<td>BTEX</td>
<td>Benzène/toluène/éthylbenzène/xylènes</td>
</tr>
<tr>
<td>CA</td>
<td>Certificat d’analyse</td>
</tr>
<tr>
<td>CALA</td>
<td>Association canadienne pour la reconnaissance officielle des laboratoires (anciennement l’Association canadienne des laboratoires d’analyse environnementale, l’ACLAЕ)</td>
</tr>
<tr>
<td>CAN-P-1585</td>
<td>Exigences relatives à l’accréditation des laboratoires d’analyse environnementale du Conseil canadien des normes</td>
</tr>
<tr>
<td>CCME</td>
<td>Conseil canadien des ministres de l'Environnement</td>
</tr>
<tr>
<td>CCN</td>
<td>Conseil canadien des normes</td>
</tr>
<tr>
<td>CEI</td>
<td>Chromatographie d’échange d’ions</td>
</tr>
<tr>
<td>Ci</td>
<td>Concentration de composé i en µg/L</td>
</tr>
<tr>
<td>CITAC</td>
<td>Cooperation on International Traceability in Analytical Chemistry</td>
</tr>
<tr>
<td>COSV</td>
<td>Composé organique semi volatil</td>
</tr>
<tr>
<td>COV</td>
<td>Composé organique volatil</td>
</tr>
<tr>
<td>CP</td>
<td>Chlorophénols</td>
</tr>
<tr>
<td>CPNC</td>
<td>Composés phénoliques non chlorés</td>
</tr>
<tr>
<td>CQ</td>
<td>Contrôle de la qualité</td>
</tr>
<tr>
<td>CVAAS</td>
<td>Spectrométrie d’absorption atomique à vapeur froide</td>
</tr>
<tr>
<td>CVAFS</td>
<td>Spectrométrie de fluorescence atomique à vapeur froide</td>
</tr>
<tr>
<td>d</td>
<td>Distance</td>
</tr>
<tr>
<td>DC</td>
<td>Différenciation des coliformes</td>
</tr>
<tr>
<td>DCE</td>
<td>Détecteur à capture d’électrons</td>
</tr>
<tr>
<td>Acronyme</td>
<td>Définition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>DID</td>
<td>Détection d’ions déterminés</td>
</tr>
<tr>
<td>DIF</td>
<td>DéTECTeur à ionisation de flamme</td>
</tr>
<tr>
<td>DNP</td>
<td>2,4-Dinitrophénol</td>
</tr>
<tr>
<td>DO</td>
<td>Oxygène dissous</td>
</tr>
<tr>
<td>DPC</td>
<td>1,5-Diphénylcarbazide</td>
</tr>
<tr>
<td>DPD</td>
<td>N,N-Diethyl-p-phenylenediamine</td>
</tr>
<tr>
<td>DRP</td>
<td>Différence relative en pourcentage</td>
</tr>
<tr>
<td>DSLa</td>
<td>Direction des services de laboratoire, Ministère de l’Environnement de l’Ontario</td>
</tr>
<tr>
<td>ECL</td>
<td>Échantillon de contrôle de laboratoire</td>
</tr>
<tr>
<td>EI</td>
<td>ÉTalon interne</td>
</tr>
<tr>
<td>ELP</td>
<td>Extraction par liquide sous pression</td>
</tr>
<tr>
<td>EPS</td>
<td>Extraction en phase solide</td>
</tr>
<tr>
<td>EQT</td>
<td>Équivalent toxique</td>
</tr>
<tr>
<td>ESI</td>
<td>Électrode sélective d’ions</td>
</tr>
<tr>
<td>ETP</td>
<td>Équivalents toxiques potentiels</td>
</tr>
<tr>
<td>ETR</td>
<td>Écart-type relatif</td>
</tr>
<tr>
<td>F4Ggs</td>
<td>F4G, nettoyage à l’aide de gel de silice</td>
</tr>
<tr>
<td>FCO</td>
<td>Fraction de carbone organique</td>
</tr>
<tr>
<td>FD</td>
<td>Facteur de dilution</td>
</tr>
<tr>
<td>FET</td>
<td>Facteur d’équivalence toxique</td>
</tr>
<tr>
<td>FET</td>
<td>Facteur d’équivalence toxique</td>
</tr>
<tr>
<td>FETi</td>
<td>Facteur d’équivalence toxique pour composé i (sans unité)</td>
</tr>
<tr>
<td>GC</td>
<td>Chromatographie en phase gazeuse (ou GLC chromatographie gaz-liquide)</td>
</tr>
<tr>
<td>GC x GC</td>
<td>Chromatographie en phase gazeuse bidimensionnelle</td>
</tr>
<tr>
<td>GC-ECD</td>
<td>Chromatographie en phase gazeuse avec capture d’électrons</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Chromatographie en phase gazeuse avec ionisation de flamme</td>
</tr>
<tr>
<td>GC-HRMS</td>
<td>Chromatographie en phase gazeuse avec spectrométrie de masse à haute résolution</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Chromatographie en phase gazeuse avec spectrométrie de masse</td>
</tr>
<tr>
<td>GC-MS/MS</td>
<td>Chromatographie en phase gazeuse avec spectrométrie de masse en tandem</td>
</tr>
<tr>
<td>HAP</td>
<td>Hydrocarbure aromatique Polycyclique</td>
</tr>
<tr>
<td>HCP</td>
<td>Hydrocarbure pétrolier</td>
</tr>
<tr>
<td>HPLC</td>
<td>Chromatographie en phase liquide à haute performance</td>
</tr>
<tr>
<td>HPLC-FLU</td>
<td>Chromatographie en phase liquide à haute performance avec détection par fluorescence</td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>Chromatographie en phase liquide à haute performance avec détection par ultraviolet</td>
</tr>
<tr>
<td>HRGC-HRMS</td>
<td>Chromatographie en phase gazeuse à haute résolution - spectrométrie de masse à haute résolution</td>
</tr>
<tr>
<td>HRSM</td>
<td>Spectrométrie de masse à haute résolution</td>
</tr>
<tr>
<td>HSGC-FID</td>
<td>Chromatographie en phase gazeuse avec ionisation de flamme dans l’espace de tête</td>
</tr>
<tr>
<td>ICP</td>
<td>Spectrométrie avec plasma à couplage inductif</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Spectrométrie de masse avec plasma à couplage inductif</td>
</tr>
<tr>
<td>Acronyme</td>
<td>Explication</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Spectroscopie d'émission avec plasma induit par haute fréquence</td>
</tr>
<tr>
<td>IRAC</td>
<td>Indice de risque additionnel de cancer</td>
</tr>
<tr>
<td>ISO/CEI</td>
<td>Organisation international de normalisation/Commission électrotechnique internationale</td>
</tr>
<tr>
<td>LC</td>
<td>Chromatographie en phase liquide</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Chromatographie en phase liquide – spectrométrie de masse</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Chromatographie en phase liquide avec spectrométrie de masse en tandem</td>
</tr>
<tr>
<td>LDE</td>
<td>Limite de détection estimée</td>
</tr>
<tr>
<td>LDM</td>
<td>Limite de détection de la méthode</td>
</tr>
<tr>
<td>LPE</td>
<td>Loi sur la protection de l'environnement, L.R.O. 1990, c. E.19</td>
</tr>
<tr>
<td>MDT</td>
<td>Matières dissoutes totales</td>
</tr>
<tr>
<td>MDDEFP</td>
<td>Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs</td>
</tr>
<tr>
<td>MECCO</td>
<td>Ministère de l’Environnement et de l’Action en matière de changement climatique de l’Ontario : Lorsqu’il est question de méthodes d'analyse, le MECCO désigne la Direction des services de laboratoire. Lorsqu’il est question de normes ou de réglementation, le MECCO désigne la Direction de l'élaboration des normes</td>
</tr>
<tr>
<td>MEQ</td>
<td>Milliérquivalents</td>
</tr>
<tr>
<td>MN</td>
<td>Méthodes normalisées (American Public Health Association/American Water Works Association/Water Environmental Federation)</td>
</tr>
<tr>
<td>MRC</td>
<td>Matériau de référence certifié</td>
</tr>
<tr>
<td>MS</td>
<td>Spectrométrie de masse</td>
</tr>
<tr>
<td>ND</td>
<td>Non détecté</td>
</tr>
<tr>
<td>NP</td>
<td>Nonylphénol</td>
</tr>
<tr>
<td>NPEC</td>
<td>Nonylphénol ethyl carboxylate</td>
</tr>
<tr>
<td>NPEO</td>
<td>Éthoxyiate de Nonylphénol</td>
</tr>
<tr>
<td>NR CAS</td>
<td>Numéro de registre CAS de l’American Chemical Society Registration</td>
</tr>
<tr>
<td>NTU</td>
<td>Unités de turbidité néphélémétrique</td>
</tr>
<tr>
<td>OP</td>
<td>Octylphénol</td>
</tr>
<tr>
<td>OPEC</td>
<td>Octylphénol ethyl carboxylate</td>
</tr>
<tr>
<td>OPEO</td>
<td>Éthoxylate d'octylphénol</td>
</tr>
<tr>
<td>OQD</td>
<td>Objectifs de qualité des données</td>
</tr>
<tr>
<td>P et H</td>
<td>Pesticides et herbicides</td>
</tr>
<tr>
<td>PCDD</td>
<td>Dibenzo-p-dioxin polychloré</td>
</tr>
<tr>
<td>PCDD/F</td>
<td>Dibenzo-p-dioxin polychloré / dibenzofuran polychloré</td>
</tr>
<tr>
<td>PCDF</td>
<td>Dibenzofuran polychloré</td>
</tr>
<tr>
<td>PEHD</td>
<td>Polyéthylène haute densité</td>
</tr>
<tr>
<td>PET</td>
<td>Téréphthalate de polyéthylène</td>
</tr>
<tr>
<td>PFOA</td>
<td>Perfluorooctanoate</td>
</tr>
<tr>
<td>PFOS</td>
<td>Acide perfluorooctanesulfonique</td>
</tr>
<tr>
<td>PO</td>
<td>Pesticides organochlorés</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylène</td>
</tr>
</tbody>
</table>
PQ Personne qualifiée
RAS Rapport d'adsorption du sodium
RC Racine carrée
RCQE Recommandations canadiennes pour la qualité de l’environnement
Règ. O. 153/04 Règlement de l’Ontario 153/04 Records of Site Condition: Part XV.1 de la Loi sur la protection de l’environnement
RHgCl Chlorure organomercurique
S/O-N/D Sans objet ou non disponible
S/V Sans valeur déclarée à titre de norme
SD Seuil de détection
SDL Seuil de déclaration par les laboratoires, seuil de déclaration, (aussi limites de détection)
SDLₙ Seuil de déclaration par les laboratoires pour les échantillons dilués
SEA Spectroscopie d’émission atomique
SFA Spectroscopie par fluorescence atomique
SGQ Système de gestion de la qualité
SP-HCP Standards canadiens relatifs aux hydrocarbures pétroliers
SRM Suivi de réactions multiples
TAFIT Tampon d’ajustement de la force ionique totale
THM Trihalométhanes
TSS Total des solides en suspension, ou sédiments en suspension
UC Unités couleur
UICPA Union internationale de chimie pure et appliquée
US EPA United States Environmental Protection Agency
USGS-NWQL United States Geological Survey-National Water Quality Laboratory
v/v Volume à volume
VCE Vérification continue de l’étalonnage
VP Vérification de la performance (en lien avec les échantillons de contrôle de la performance)
Vt Solvant total/volume d’eau
WEF Water Environment Federation
GLOSSAIRE

Accréditation : Reconnaissance formelle de la compétence d’un laboratoire pour réaliser des essais ou des types d’essais déterminés.

Adapté à l’objectif visé : Mesure dans laquelle les données produites par un processus de mesure permettent à un utilisateur de prendre des décisions correctes d’un point de vue technique et administratif pour une fin convenue (IUPAC).

Analyses répétées : Deux sous-échantillons prélevés d’un même échantillon à l'intérieur du laboratoire, généralement analysés au même moment. Des échantillons répétés sont prélevés pendant tout le processus de la méthode pour évaluer la précision de la méthode à l'intérieur des séries d'analyses ou l'homogénéité de la matrice d'échantillon.

Analyte : Substance ou composante chimique déterminée à l’aide d’une méthode d’analyse, par exemple un titrage.

Assurance de la qualité (AQ) : L’assurance de la qualité est un système d’activités planifiées qui visent à fournir l’assurance que les exigences de qualité sont respectées. L’assurance de la qualité est l’un des éléments du système de qualité.

Blanc : Eau réactive ou autre type de blanc (acide ou solvant) utilisé pour la vérification de l’absence de contamination des réactifs, de la verrerie de laboratoire et des processus de la méthode.

Blanc de la méthode : Échantillon témoin soumis à un processus identique à celui utilisé pour les échantillons d’essai. Les résultats obtenus servent à évaluer le degré de contamination provenant du laboratoire et des agents réactifs.

Blanc de transport : Échantillon (non ouvert) propre d’une matrice amené sur le site d’échantillonnage puis retiré du site d’échantillonnage et transporté vers le laboratoire pour analyse sans avoir été exposé à la procédure d’échantillonnage. Un blanc de transport est utilisé pour documenter la contamination attribuable aux procédures de préparation, d’expédition et de manipulation sur le terrain. Ce type de blanc est utile pour documenter la contamination d’échantillons de composés organiques volatils. EPA530-D-02-002, Annexe A.

Composé organique extractible : Composé organique séparé de la matrice de l’échantillon par extraction au solvant avant de procéder à l’analyse. Ces composés possèdent un point d’ébullition supérieur à l’eau et peuvent s’évaporer lorsqu’ils sont exposés à des températures supérieures à la température ambiante. Pour les besoins du présent recueil, le composé organique extractible est équivalent à un composé organique semi-volatil (COSV).
Composé organique volatil (COV): Tout composé organique possédant à 20°C une pression de vapeur de 0,01 kPa ou plus, ou ayant une volatilité correspondante dans les conditions d’utilisation particulières.

Composé organique semi-volatil (COSV): Un composé organique semi-volatil est un composé organique dont le point d’ébullition est supérieur à celui de l’eau et qui peut se vaporiser lorsqu’exposé à des températures supérieures à la température ambiante. Les composés organiques semi-volatils comprennent les phénols et les hydrocarbures aromatiques polycycliques (HAP).

Conservation sur le terrain: Lorsque cela est exigé, les échantillons doivent être conservés sur le terrain à l’aide de l’agent de conservation spécifié pour ce groupe de paramètre (dans les 24 heures de l’échantillonnage) ou immédiatement après la filtration (lorsque la filtration est requise).

Contaminant: Tout solide, liquide, gaz, odeur, chaleur, son, vibration, rayonnement ou combinaison de ces éléments provenant directement ou indirectement de l’activité humaine pouvant causer un effet nocif.

Contrôle de la qualité (CQ): Ensemble de techniques opérationnelles et d’activités ayant pour but de s’assurer que les exigences de qualité sont respectées dans les limites des probabilités connues. Le contrôle de la qualité est l’un des éléments du système de qualité.

Différence relative en pourcentage (DRP): Différence absolue entre deux résultats exprimée en pourcentage du résultat moyen :

$$ RPD = \left(\frac{(x_1 - x_2)}{(x_1 + x_2)/2} \right) \times 100 $$

Duplicata de laboratoire: Aliquote supplémentaire ou deuxième aliquote (partie) d’un échantillon sélectionné au hasard parmi les échantillons du lot analysé réutilisée tout au long du processus d’analyse. Également désigné sous l’appellation échantillon fractionné.

Écart-type relatif: Mesure de précision dans l’analyse des données. L’écart-type relatif est calculé en divisant l’écart-type d’une série de valeurs par la moyenne des valeurs. S’exprime habituellement exprimé en pourcentage.

$$ ETR = \frac{\text{écart-type}(1-x)}{\sum(1-x)/n} \times 100\% $$

Échantillon composite: Échantillon constitué de plusieurs sous-échantillons soigneusement mélangés les uns aux autres.

Échantillon de contrôle de laboratoire: Échantillon de concentration connue utilisé comme point de comparaison avec des échantillons d’essai, et qui reçoivent le même traitement que les échantillons d’essai. Cet échantillon est également connu sous l’appellation échantillon blanc enrichi.

Échantillon en duplicata: L’un des deux échantillons prélevés dans la même population et ayant suivi toutes les étapes d’échantillonnage et d’analyse de manière identique.

Échantillon enrichi: Échantillon provenant d’une matrice d’échantillon à laquelle ont été ajoutés un ou plusieurs analytes présentant de l’intérêt de manière à vérifier le taux de récupération de la méthode ou de parties de la méthode.
Échantillon pour le contrôle de la qualité : Échantillon (c.-à-d., échantillon d’essai, échantillon de contrôle de laboratoire ou étalon de contrôle) utilisé de manière ponctuelle ou répétée, selon le cas, pour surveiller les paramètres de rendement [ISO 3534-1, 2.30].

Échantillon répété de terrain : Échantillons distincts prélevés le plus près possible du même point dans l’espace et le temps. Il s’agit de deux échantillons distincts prélevés dans la même source, entreposés dans des contenants distincts et analysés de façon indépendante. Ces échantillons répétés sont utiles pour démontrer la précision du processus d’échantillonnage (US EPA SW-846, chapitre 1).

Échantillon représentatif : Sous-échantillon de matière prélevé de manière à ce que sa composition et ses caractéristiques soient essentiellement les mêmes que celles de la matière d’origine.

Échantillonneur hermétique : Instrument d’échantillonnage de sols reconnu par l’US EPA disponible dans le commerce servant à l’analyse des COV. Cet instrument est inséré dans le sol pour recueillir et sceller une carotte de sol (sans espace de tête). L’instrument est transporté au laboratoire où l’échantillon entier est extrait et analysé.

Étalons d’analyse : Série d’étalons chimiques des analytes cibles utilisés pour établir un rapport entre la réponse instrumentale et la concentration ou la vérification qualitative à la sortie de l’instrument.

Étalon interne : Étalon possédant des propriétés chimiques semblables à celles de l’analyte, mais qui provoque une réaction analytique différente sans être sensible aux interférences. L’ajout d’étalons internes à l’échantillon ou aux extraits d’échantillons se fait habituellement juste avant l’analyse de l’échantillon afin de corriger les variations dans la matrice d’échantillons, le volume d’injection, etc.

Exactitude : Proximité des résultats d’un test par rapport à la valeur de référence acceptée.

Filtre de terrain : Lorsque cela est requis, les échantillons d’eau doivent être filtrés à l’aide d’un filtre à membrane de 0,45 μm le plus tôt possible après le prélèvement puis immédiatement conservés (lorsque la conservation est nécessaire). Note : un diamètre de pore de 0,45 μm est le diamètre par défaut utilisé pour séparer des espèces dissoutes, sauf indication contraire dans la méthode pour un paramètre donné.

Incertitude : Paramètre non négatif associé au résultat d’une mesure qui caractérise la variation des valeurs qui pourrait raisonnablement être attribuée à une mesurande. Vocabulaire international de métrologie - Concepts fondamentaux et généraux et termes associés; Guide ISO/CEI 99:2007 (VIM 2007)).

Limite de détection de la méthode (LDM) : Concentration minimale d’un analyte qui peut être identifié, mesuré et rapporté comme étant plus grand que zéro avec un degré de confiance atteignant 99 %. Elle est déterminée à l’aide de données produites par analyse répétée d’un échantillon dans une matrice donnée contenant l’analyte (CAN-P-1585-novembre 2006).

Limite de dosage (LD) : La plus faible concentration d’un analyte qui peut être mesurée de manière fiable à l’intérieur de limites de précision et d’exactitude déterminées dans un contexte de fonctionnement normal, par opposition à la simple détection (US EPA, 2002; Gibbons et Coleman, 2001). Généralement 10 fois l’écart-type à partir de l’analyse répétée d’un échantillon de bas niveau.

Limite de dosage pratique (LDP) : Peut également correspondre à la LD, aux limites de déclaration de la méthode ou à d’autres définitions.

Matériau de référence certifié (MRC) : Matériau de référence accompagné d’une documentation délivrée par un organisme faisant autorité et fournissant une ou plusieurs valeurs de propriétés.
spécifiées avec les incertitudes et les traçabilités associées en utilisant des procédures valables (ISO/IEC GUIDE 99.2007).

Matériaux de référence (MR) : Matériau ou substance dont une ou plusieurs propriétés sont suffisamment homogènes et bien établies pour qu’il ou elle puisse servir à l’étalonnage d’un appareil, l’évaluation d’une méthode de mesure ou l’attribution de valeurs assignées à d’autres matériaux. Le MR doit être semblable à la matrice des échantillons, et transporté tout au long du processus d’analyse.

Matrice : Milieu duquel un échantillon donné est tiré (chimie analytique), généralement l’air, le sol ou les sédiments, l’eau souterraine ou de surface pour les besoins du présent recueil.

Méthode des additions connues : Détermination de la concentration d’analyte par l’addition de quantités d’analytes connues (dopage) à des aliquotes d’échantillon. La détermination est fondée sur la pente et le point d’intersection de la courbe des additions connues (récupération). La réponse analytique doit être linéaire. Cette technique est utilisée pour corriger les effets de matrice.

Norme ISO/IEC 17025 : Les exigences de l’Organisation internationale de normalisation, telles que modifiées de temps à autre, afin de vérifier les performances des laboratoires afin qu’ils puissent démontrer qu’ils sont techniquement compétents, qu’ils maintiennent un système de qualité approprié compte tenu de leurs activités, et qu’ils sont capables de produire des résultats d’essais et d’étalonnage techniquement valides.

Normes applicables à l’état des sites : Aux fins du présent recueil, les contaminants prescrits et les normes applicables à l’état des sites pour ces contaminants sont ceux et celles contenus dans les Recommandations canadiennes pour la qualité de l’environnement et dans les tableaux 1 à 9 du règlement *Soil, Water and Sediment Standards. O. Reg. 153/04, s. 34 (1).*

Objectif de qualité des données (OQD) : Énoncés qualitatifs et quantitatifs du niveau d’incertitude global qu’un décideur acceptera dans les résultats ou décisions basés sur des données environnementales. Ils constituent le cadre statistique pour les opérations de planification et de gestion des données environnementales conformément aux besoins de l’utilisateur.

Paramètre : Un paramètre devant faire l’objet d’un essai. Synonyme d’autres termes comme « contaminant », « analyte cible » ou « analyte ».

Personne qualifiée (PQ) : Les personnes qualifiées sont des professionnels reconnus pour leur compétence d’évaluation des données d’analyse en ce qui a trait à la législation provinciale, territoriale ou fédérale.

Précision : concerne la variation entre les variables, c.-à-d. la dispersion entre les variables (UICPA).

Série d’analyses : Groupe d’échantillons soumis ensemble à chacune des étapes d’une méthode d’analyse.

Seuil de déclaration par les laboratoires (SDL) : La plus faible concentration d’un analyte rapportée avec un degré raisonnable d’exactitude et de précision, souvent synonyme de LD ou de LDP. Le SDL correspond généralement à 3 à 10 fois la limite de détection de la méthode (LDM). Cependant, le SDL doit être égal ou supérieur à la LDM.

Solides : Désigne les sols et les sédiments aux fins du présent recueil.

Substitut : Substance possédant des caractéristiques chimiques semblables à celles de l’analyte, et qui fournit une réponse analytique distincte de l’analyte. Le substitut est habituellement ajouté à
l’échantillon avant la préparation de l’échantillon et utilisé pour évaluer la récupération de l’analyte ou des analytes tout au long du processus d’analyse.

Système de contrôle de la qualité : Ensemble d’éléments interdépendants (p.ex., politiques et objectifs) qui dirigent et contrôlent la manière dont une installation fonctionne eu égard à la qualité.

Temps de rétention : Temps écoulé entre le moment du prélèvement de l’échantillon et le début de la préparation des échantillons ou de l’analyse, selon le cas.
1 INTRODUCTION

Ce recueil contient des recommandations dans le but d’établir une approche cohérente concernant la manipulation et l’analyse des échantillons ainsi que la communication des données liées aux paramètres contenus dans les recommandations canadiennes pour la qualité de l’environnement. Ce document est fourni à titre indicatif par le CCME, mais les provinces et les territoires peuvent avoir des exigences spécifiques qui doivent également être prises en compte.

L’information contenue dans ce recueil a pour but d’assurer que des échantillons appropriés sont soumis aux laboratoires, que les échantillons sont analysés au moyen de méthodes adéquates et que les résultats rapportés sont d’une qualité suffisante pour fonder les décisions devant être prises conformément aux dispositions réglementaires.

Le traitement et l’analyse des échantillons dépendent en grande partie des propriétés chimiques et physiques du paramètre devant être mesuré. Les paramètres possédant des propriétés physiques et chimiques semblables peuvent être regroupés et traités ensemble. La section 2 présente les paramètres qui peuvent être regroupés et traités ensemble.

Le recueil est organisé comme suit : Introduction (section 1), Descriptions des groupes de paramètres (section 2), Exigences de manipulation et de stockage des échantillons (section 3), Méthodes d’analyse (section 4), Production de rapports (section 5), Exigences d’assurance et de contrôle de la qualité (section 6), et Références (section 7).
2 DESCRIPTIONS DES GROUPES DE PARAMÈTRES

La présente section identifie les substances associées à chaque groupe de paramètres. Une liste alphabétique des contaminants et du groupe de paramètres auquel ils appartiennent se trouvent à l’annexe 1. Les numéros de registre du Chemical Abstracts Service (NR CAS) pour les paramètres chimiques individuels (le cas échéant) sont inscrits dans le tableau 5.1. Les méthodes d’analyse pour chaque groupe se trouvent à la section 4, tandis que les seuils de déclaration par les laboratoires recommandés se trouvent à la section 5.

Toutes les substances couvertes par une RCQE figurent dans les groupes de paramètres applicables ci-dessous. Certaines substances contenues dans un groupe de paramètres ne possèdent pas encore de RCQE, mais ont été incluses, car elles peuvent présenter un intérêt futur, ou offrir un intérêt pour les chercheurs intéressés par le groupe de paramètres, en général.

Identification des contaminants soupçonnés : La phase 1 de l’évaluation a pour but d’identifier les contaminants soupçonnés d’être associés à un site, lesquels sont par la suite étudiés plus en détail au cours de la phase 2 de l’évaluation. Lorsque les données demandées visent une seule substance ou un sous-ensemble d’un grand nombre de substances apparentées, les rapports peuvent présenter des données uniquement pour un sous-ensemble spécifié, mais il faut savoir que dans certaines situations, un rapport d’analyse plus vaste et détaillé peut être plus approprié. Par exemple, sur les sites où il est possible qu’une substance métallique naturelle soit mobilisée par les contaminants soupçonnés (p.ex., changement de pH dans un tas soufre ou d’autres sources d’acidification, changements des conditions d’oxydoréduction pour les hydrocarbures et d’autres substances facilement biodisponibles, échange d’ions dans le cas des panaches de sel concentré), il est recommandé de produire un rapport portant sur la gamme complète de métaux associés au groupe de paramètres.

Dans le cas des substances non naturelles produites au sein d’un groupe de paramètres (p.ex., les composés organiques chlorés), il peut être intéressant de produire un rapport portant sur l’ensemble du groupe de paramètres, car des produits de filiation pourraient présenter un intérêt ou constituer une source de préoccupation. Les enquêteurs sont aussi encouragés à effectuer des balayages par chromatographie en phase gazeuse avec spectrométrie de masse (GC-MS) à large spectre qui permettent d’identifier des composés non ciblés en comparant le spectre de masse du composé inconnu à la bibliothèque de l’instrument de spectrométrie de masse.

2.1 Groupe des paramètres organiques

2.1.1 Composés organiques acides/basiques/neutres (ABN)* extractibles

<table>
<thead>
<tr>
<th>Paramètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aniline</td>
</tr>
<tr>
<td>Phtalate de bis(2-éthylhexyle)</td>
</tr>
<tr>
<td>Dinitrotoluène, 2,4-(2,6-)</td>
</tr>
<tr>
<td>Biphényle, 1,1-</td>
</tr>
<tr>
<td>3,3’-dichlorobenzidine</td>
</tr>
<tr>
<td>Phtalate de di-n-octyle</td>
</tr>
<tr>
<td>Oxyde de bis(2-chloroéthyle)</td>
</tr>
<tr>
<td>Phtalate de diéthyle</td>
</tr>
<tr>
<td>Esters d’acide phthalique (individuel)</td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl)ether</td>
</tr>
<tr>
<td>Phtalate de diméthyle</td>
</tr>
</tbody>
</table>

* Filtre extractable
Chloroaniline, p- Phthalate de di-n-butyle

** La somme du dinitrotoluène 2,4- et 2,6- est comparée à l’étalon.
††† Le CCME n’a pas établi de liste d’esters d’acide phthalique. Pour les besoins du présent document, la liste comprend les composés de phthalate tirés des lignes directrices de l’Ontario.

2.1.2 Chlorophénols (CP) et composés phénoliques non chlorés (CPN)*

Paramètres

<table>
<thead>
<tr>
<th>Paramètres</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichlorophénol, 2,4- 2,5- 2,6- 3,4- 3,5 –</td>
<td>–Phénol</td>
</tr>
<tr>
<td>Diméthylephénol, 2,4-**</td>
<td>Composés phénoliques non chlorés**</td>
</tr>
<tr>
<td>Dinitrophénol, 2,4-**</td>
<td>Phénols (monohydrique et dihydrique)††</td>
</tr>
<tr>
<td>Monochlorophénol, 2- 3- 4-</td>
<td>–Tétrachlorophénol, 2,3,4,5- 2,3,4,6- 2,3,5,6- 3,4,5,6-</td>
</tr>
<tr>
<td>Pentachlorophénol (PCP)</td>
<td>Trichlorophénol, 2,3,4- 2,3,5- 2,3,6- 2,4,5- 2,4,6 -3,4,5-</td>
</tr>
</tbody>
</table>

*Les CP et les CPN peuvent également être mesurés conjointement avec les ABN dans la mesure où les exigences relatives au SDL sont respectées.
** Les composés phénoliques non chlorés (CPN) comprennent le 2,4-diméthylphénol; le 2,4-dinitrophénol; le 2-méthyl 4,6-dinitrophénol; le 2-nitrophénol; le 4-nitrophénol; et l’o-, le m- et le p-crésol (méthylphénol).
†† Le CCME n’a pas sélectionné de liste de phénols (mono- et dihydriques) à surveiller. Pour les besoins du présent recueil, la liste comprend les composés phénoliques, les 4 -hydroxyphénol (hydroquinone) non chlorés et les 3-hydroxyphénol (résorcinol) tirés des lignes directrices de la Colombie-Britannique.

2.1.3 1,4-Dioxane*

Paramètres

<table>
<thead>
<tr>
<th>Paramètres</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxane, 1,4-</td>
<td></td>
</tr>
</tbody>
</table>

* Peut également être mesuré conjointement avec les ABN ou les COV en ayant recours au procédé de la dilution isotopique.

2.1.4 Glycols

<table>
<thead>
<tr>
<th>Paramètres</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diéthyléneglycol</td>
<td></td>
</tr>
<tr>
<td>Éthylène glycol</td>
<td></td>
</tr>
<tr>
<td>Propylène glycol 1,2-</td>
<td></td>
</tr>
</tbody>
</table>
2.1.5 *Pesticides organochlorés (PO)*

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Synonyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>Hexachlorobenzène</td>
</tr>
<tr>
<td>Chlordane, alpha- (α-chlordane)*</td>
<td>Hexachlorobutadiène (HCBD)</td>
</tr>
<tr>
<td>Chlordane, gamma- (γ-chlordane)*</td>
<td>Hexachlorocyclohexane, gamma- (γ-HCH, Llindane, γ-BHC†)</td>
</tr>
<tr>
<td>Dichloro diphényl dichloroéthane, (2,2-Bis (p-chlorophényl)-1,1-dichloroéthane, DDD)***</td>
<td>Hexachloroéthane</td>
</tr>
<tr>
<td>Dichloro diphényl éthylène, (1,1-Dichloro-2,2-bis(p-chlorophényl)-éthène, DDE)***</td>
<td>Méthoxychlore</td>
</tr>
<tr>
<td>Dichloro diphényl trichloroéthane; (2,2-Bis(p-chlorophényl)-1,1-trichloroéthane, DDT)***</td>
<td>Métolachlore††</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>Pentachlorobenzène††</td>
</tr>
<tr>
<td>Endosulfan I (thiodan sulfate I)**</td>
<td>Tétrachlorobenzène, 1,2,3,4-†††</td>
</tr>
<tr>
<td>Endosulfan II (thiodan sulfate II)**</td>
<td>Tétrachlorobenzène, 1,2,3,5-†††</td>
</tr>
<tr>
<td>Endrin</td>
<td>Toxaphène</td>
</tr>
<tr>
<td>Heptachlore</td>
<td>Toxaphène</td>
</tr>
<tr>
<td>Heptachlorépoxyde</td>
<td>Toxaphène</td>
</tr>
</tbody>
</table>

* La somme de chlordane alpha- et gamma- est comparée à l’étalon

** La somme d’endosulfan I et II est comparée à l’étalon

***La norme relative au DDT s’applique aux concentrations totales de DDT (c.-à-d., la somme des isomères de DDT), la norme relative au DDE s’applique aux concentrations totales de DDE (c.-à-d., la somme des isomères de DDE), et la norme relative au DDD s’applique aux concentrations totales de DDD (c.-à-d., la somme des isomères de DDD).

†Erronément connu sous l’appellation hexachlorure de benzène (HHC).

†† Peut également être mesuré conjointement avec les ABN

†††Techniquement il ne s’agit pas de PO, mais ces substances font partie de la même série d’analyse. Elles peuvent également être mesurées conjointement avec les ABN.

2.1.6 *Composés d’organoétaïn*

Paramètres

- Tributylétaïn
- Tricyclohexylétaïn
- Triphénylétaïn

2.1.7 *Acides sulfoniques perfluorés, acides perfluorocarboxyliques et leurs sels*

Sels d’acides sulfoniques

- Perfluorobutanesulfonate (PFBS)
- Perfluorohexanesulfonate (PFHxS)
- Perfluoroctanesulfonate (PFOS)**
- Perfluoroctane sulfonamide (PFOSA)

Sels d’acide carboxyliques

- Perfluorobutanoate (PFBA)
- Perfluoropentanoate (PFPeA)
- Perfluorohexanoate (PFHxA)
- Perfluoroheptanoate (PFHpA)
- Perfluorooctanoate (PFOA)
<table>
<thead>
<tr>
<th>Sels d’acides sulfoniques</th>
<th>Sels d’acide carboxyliques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perfluorononanoate (PFNA)</td>
</tr>
<tr>
<td></td>
<td>Perfluorodecanoate (PFDA)</td>
</tr>
<tr>
<td></td>
<td>Perfluoroundecanoate (PFUnA)</td>
</tr>
<tr>
<td></td>
<td>Perfluorododecanoate (PFDoA)</td>
</tr>
</tbody>
</table>

Ces composés peuvent être exprimés sous forme d’acides ou de sels. Dans le tableau, ils sont répertoriés comme composant anionique du sel, parce que plusieurs cations différents peuvent être jumelés avec l’anion.

**Bien qu’il n’existe pas pour l’instant de recommandations du CCME pour les acides sulfoniques perfluorés et les acides perfluorocarboxyliques, ce groupe a été inclus compte tenu de l’intérêt récent pour ces paramètres. Cette liste comprend les composés les plus couramment analysés. D’autres composés perfluorés peuvent être déterminés en utilisant la même procédure.*

2.1.8 *Pesticides et herbicides (P et H)*

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Atrazine</th>
<th>Deltaméthrine</th>
<th>Métribuzine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromacil</td>
<td>Dicamba (acide 3,6-dichloro-2-méthoxybenzoïque)</td>
<td>Perméthrine</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Diclofop-méthyl</td>
<td>Picloram</td>
</tr>
<tr>
<td>Captan (éthanéthiol)</td>
<td>Chlorure de didécyldiméthylammonium (CDDA)</td>
<td>Simazine</td>
</tr>
<tr>
<td>Carbaryl (1-naphthyl méthylcarbamate)</td>
<td>Diméthoate</td>
<td>Tébuthiuron</td>
</tr>
<tr>
<td>Chlorothalonil (tétrachloroisophthalonitrile)</td>
<td>Dinosèbe</td>
<td>Trifluraline</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Linuron</td>
<td></td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Méthoprine</td>
<td></td>
</tr>
</tbody>
</table>

* Les pesticides de la famille des carbamates, les herbicides à base de glyphosates et les herbicides du type phenoxy peuvent être déterminés en tant que groupes distincts.*

2.1.8.1 *Carbamates*

Paramètres (Synonymes)

Aldicarbe	3-lodo-2-propynyl butylcarbamate (IPBC)
Carbofurane	Imidaclopride
Triallate	

* Peut être mesuré conjointement avec les pesticides et les herbicides.
2.1.8.2 **Glyphosate***

Paramètres

- Glyphosate

* Peut également être mesuré conjointement avec les pesticides et les herbicides.

2.1.8.3 **Herbicides de type phénoxy***

Paramètres (Synonymes)

- Acide dichlorophénoléxyacétique, 2,4-D
- Acide méthylchlorophénoléxyacétique (acide 4-chloro-2-méthylphénoléxy acétique; acide 2-méthyl-4-chlorophénoléxy acétique, MCPA)

* Peut également être mesuré conjointement avec les pesticides et les herbicides ou les ABN.

2.1.9 **Hydrocarbures pétroliers (HCP)**

Paramètres

- Hydrocarbures pétroliers (HCP) (fractions C6 à C10)
 - F1 (C6 à C10)
- Hydrocarbures pétroliers (HCP) (fractions C10 à C50)
 - F2 (C10 à C16), F3 (C16 à C34), F4* (C34 à C50), F4G* (gravimétrique)

* Le résultat le plus élevé obtenu pour les F4 et les F4G est comparé à l’étalon.

2.1.10 **Biphényles polychlorés (BPC)**

Paramètres

- Aroclor 1242
- Aroclor 1248
- Aroclor 1254
- Aroclor 1260
- Biphényles polychlorés (BPC) totaux

2.1.11 **Dibenzo-p-dioxines polychlorés/Dibenzofuranes (PCDD/PCDF)**

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Groupes de congénères</th>
<th>Isomères substitués 2,3,7,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tétrachlorodibenzo-p-dioxide total (T4CDD)</td>
<td>2,3,7,8-TCDD</td>
</tr>
<tr>
<td>Pentachlorodibenzo-p-dioxide total (P5CDD)</td>
<td>1,2,3,7,8-PCDD</td>
</tr>
<tr>
<td>Hexachlorodibenzo-p-dioxide total (H6CDD)</td>
<td>1,2,3,4,7,8-HCDD</td>
</tr>
<tr>
<td></td>
<td>1,2,3,6,7,8-HCDD</td>
</tr>
<tr>
<td></td>
<td>1,2,3,7,8,9-HCDD</td>
</tr>
</tbody>
</table>
Heptachlorodibenzo-p-dioxide total (H7CDD) 1,2,3,4,6,7,8-HCDD
Octachlorodibenzo-p-dioxide (O8CDD) OCDD
Tétrachlorodibenzo-flurane total (T4CDF) 2,3,7,8-TCDF
Pentachlorodibenzo-flurane total (P5CDF) 1,2,3,7,8-PCDF 2,3,4,7,8-PCDF
Hexachlorodibenzo-flurane total (H6CDF) 1,2,3,4,7,8-HCDF 1,2,3,6,7,8-HCDF 1,2,3,7,8,9-HCDF 2,3,4,6,7,8-HCDF
Heptachlorodibenzo-flurane total (H7CDFs) 1,2,3,4,6,7,8-HCDF 1,2,3,4,7,8,9-HCDF
Octachlorodibenzo-flurane (OCDF) OCDF

2.1.12 Hydrocarbures aromatiques polycycliques (HAP)

Paramètres (Synonymes)

Acénaphthène	Benzo[k]fluoranthène	Méthylnaphthalènes*
Acénaphthylène	Benzo[g,h,i]pèrylène	Naphthalène
Acridine	Chrysène	Phénanthrène
Anthracène	Dibenz[a]anthracène	Pyrène
Benz[a]anthracène	Fluoranthène	Quinoléine
Benzo[a]pyrène (B[a]P)	Fluorène	
Benzo[b+j+k]fluoranthène**	Indéno[1,2,3-c,d]pyrène	

**Lorsque les isomères b et k ne peuvent pas être déclarés séparément, les déclarer comme la somme des isomères b, j et k et la comparer à la RCQE. Le MECCO possèdent des normes distinctes pour les isomères b et k.

2.1.13 Trihalométhanes (THM)*

Paramètres (Synonymes)

| Bromodichlorométhane (dichlorobromométhane) |
| Dibromochlorométhane (chlorodibromométhane) |
| Tribromométhane (bromoforme) |
| Trichlorométhane (chloroforme) |

* Peut également être mesuré conjointement avec les COV.

Note : Les composés de THM mentionnés ci-dessus sont couramment détectés à la suite de la chloration de l’eau potable, et sont par conséquent inclus en tant que groupe distinct des composés organiques volatils (Section 2.1.14). La somme des trichlorométhanes est comparée à l’étalon.
2.1.14 Composés organiques volatils I (COV)

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Composé</th>
<th>Synonymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acétone</td>
<td>Monobromométhane** (bromométhane, bromure de méthyle)</td>
</tr>
<tr>
<td>Benzène***</td>
<td>Monochlorobenzène</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,2-</td>
<td>Monochlorométhane (chlorure de méthyle)</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,3-</td>
<td>Styène</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,4-</td>
<td>Tétrachlorométhane, 1,1,1,2-</td>
</tr>
<tr>
<td>Dichlorodifluorométhane</td>
<td>Tétrachloroéthane, 1,1,2,2- (PCE, tétrachloroéthylène)</td>
</tr>
<tr>
<td>Dichloroéthane, 1,1-</td>
<td>Tétrachlorométhane (tétrachlorure de carbone)</td>
</tr>
<tr>
<td>Dichloroéthane, 1,2- cis-†</td>
<td>Toluène***</td>
</tr>
<tr>
<td>Dichloroéthane, 1,2- trans†</td>
<td>Trichlorobenzène, 1,2,3-††</td>
</tr>
<tr>
<td>Dichlorométhane (chlorure de méthylène)</td>
<td>Trichlorobenzène, 1,2,4-††</td>
</tr>
<tr>
<td>Dichloropropène, 1,2-</td>
<td>Trichlorobenzène, 1,3,5-††</td>
</tr>
<tr>
<td>Dichloropropène, 1,3- (cis- et trans-)*</td>
<td>Trichloroéthane, 1,1,1-</td>
</tr>
<tr>
<td>Éthylbenzène**</td>
<td>Trichloroéthane, 1,1,2-</td>
</tr>
<tr>
<td>Dibromure d'éthylène (dibromoéthane, 1,2-)</td>
<td>Trichloroéthane, 1,1,2- (TCE, tétrachloroéthylène)</td>
</tr>
<tr>
<td>Hexane, n-†</td>
<td>Trichlorofluorométhane</td>
</tr>
<tr>
<td>Méthyléthylcétone (MEK)</td>
<td>Chlorure de vinyle</td>
</tr>
<tr>
<td>Méthylisobutylcétone (MIBK)</td>
<td>Xylènes***</td>
</tr>
<tr>
<td>Méthyl tert-butyl éther (MTBE)</td>
<td></td>
</tr>
</tbody>
</table>

* La somme du 1,3-dichloropropène cis- et trans- est comparée à l’étalon.

** Les échantillons conservés dans le méthanol peuvent élever le seuil de détection du bromométhane; un échantillon distinct conservé dans le bisulfate ou scellé hermétiquement peut être requis au moment de l’échantillonnage si le bromométhane est une substance chimique préoccupante.

*** Peut être mesuré conjointement avec les BTEX.

† Le MECCO réglemente le cis-1,2-dichloréthène et le trans-1,2-dichloroéthène séparément. Les RCQE comparent la somme des composés aliphatiques chlorés, dont le 1,2-dichloroéthane, à l’étalon,

†† Peut être mesuré conjointement avec les ABN.

2.1.15 Composés organiques volatils II : Benzène, Éthylbenzène, Toluène, Xylènes (BTEX)

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Composé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzène</td>
</tr>
<tr>
<td>Éthylbenzène</td>
</tr>
<tr>
<td>Toluène (méthylbenzène)</td>
</tr>
<tr>
<td>Xylènes, total (o-xylène; m- et p-xylène)</td>
</tr>
</tbody>
</table>
Note : Les composés BTEX (benzène, toluène, éthylbenzène, xylènes) mentionnés ci-dessus sont un sous-ensemble de composés organiques volatils (COV) qui font souvent l’objet d’une analyse discrète, et sont par conséquent incus dans un groupe distinct des COV (Section 2.1.14).

2.1.16 Paramètres d’analyse des matières organiques individuelles (APR)

2.1.16.1 Diisopropanolamine

Paramètre (Synonymes)

Dipropylamine (DIPA)

2.1.16.2 Fraction de carbone organique (FCO)

Paramètre (Synonymes)

Fraction de carbone organique (FCO)

2.1.16.3 Méthylmercure

Paramètre

Méthylmercure

2.1.16.4 Nonylphénol et ses dérivés éthoxylés

Paramètres

Nonylphénol et ses dérivés éthoxylés

2.1.16.5 Sulfolane

Paramètres (Synonymes)

Sulfolane (Bondelane)

2.2 Groupe des paramètres inorganiques

2.2.1 Métaux

Paramètres

<table>
<thead>
<tr>
<th>Aluminium (Al)</th>
<th>Cobalt (Co)</th>
<th>Plomb (Pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimoine (Sb)</td>
<td>Cuivre (Cu)</td>
<td>Sélénium (Se)</td>
</tr>
<tr>
<td>Argent (Ag)</td>
<td>Étain (Sn)</td>
<td>Sodium (Na)</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>Fer (Fe)</td>
<td>Thallium (Tl)</td>
</tr>
<tr>
<td>Baryum (Ba)</td>
<td>Lithium (Li)</td>
<td>Uranium (U)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Béryllium (Be)</td>
<td>Magnésium (Mg)</td>
<td>Vanadium (V)</td>
</tr>
<tr>
<td>Bore (B)*</td>
<td>Manganèse (Mn)</td>
<td>Zinc (Zn)</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>Molybdène (Mo)</td>
<td></td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>Nickel (Ni)</td>
<td></td>
</tr>
</tbody>
</table>

*Bore extractible à l'aide d’un acide fort

2.2.2 Paramètres d’analyse des manières inorganiques individuelles (APR)

Les autres paramètres réglementés (APR) énumérés ci-dessous sont des essais à un seul paramètre.

Paramètres

<table>
<thead>
<tr>
<th>Ammoniac (total)</th>
<th>Cyanure (libre)</th>
<th>Rapport d’adsorption du sodium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniac (non ionisé)</td>
<td>Fluorure</td>
<td>Salinité</td>
</tr>
<tr>
<td>Azote (total)</td>
<td>Matières dissoutes totales*</td>
<td>Sédiments en suspension</td>
</tr>
<tr>
<td>Bore – soluble à l’eau chaude (BSEC)</td>
<td>Mercure</td>
<td>Substrats du lit</td>
</tr>
<tr>
<td>Chlorure</td>
<td>Nitrate + Nitrite</td>
<td>Sulfate</td>
</tr>
<tr>
<td>Chrome, trivalent (CR(III))</td>
<td>Nitrite</td>
<td>Soufre (élémentaire)</td>
</tr>
<tr>
<td>Chrome, hexavalent (Cr(VI))</td>
<td>Nutriments (TN et TP)</td>
<td>Sursaturation de gaz dissous</td>
</tr>
<tr>
<td>Couleur (réelle)</td>
<td>Oxygène dissous (OD)</td>
<td>Taille des particules</td>
</tr>
<tr>
<td>Conductivité</td>
<td>pH</td>
<td>Turbidité</td>
</tr>
<tr>
<td>Composés chlorés réactifs</td>
<td>Phosphore</td>
<td></td>
</tr>
</tbody>
</table>

* Les matières dissoutes totales peuvent aussi être déterminées par calcul. Voir la section 4.2.2.26

2.3 Microbiologie

2.3.1 Coliformes

Paramètres (Synonymes)

- Coliformes fécaux (*Escherichia coli*)
- Coliformes totaux

2.3.2 Cyanobactéries

Paramètres (Synonymes)

- Cyanobactéries* (algues bleu-vert)

* Souvent associées à l’analyse de la chlorophylle a et des nutriments
3 EXIGENCES DE MANIPULATION ET DE STOCKAGE DES ÉCHANTILLONS

Cette section présente les procédures de manipulation et de stockage des échantillons, notamment le type de contenant, le volume des échantillons, les exigences de conservation et de stockage et la durée maximale de garde de tous les analytes réglementés. L’information qui suit est fournie à titre indicatif par le CCME, mais les provinces et les territoires peuvent avoir des exigences spécifiques qui doivent également être prises en compte.

Il est particulièrement important que les échantillons nécessitant une analyse organique soient placés dans des contenants appropriés, et qu’ils soient refroidis dès que possible après le prélèvement. Il faut ajouter de la glace en quantité suffisante ou un autre agent de refroidissement afin de produire une température inférieure ou égale à ≤ 10 °C pendant le transit (mais en évitant le gel). Veuillez noter que les échantillons qui arrivent au laboratoire le jour même de l’échantillonnage n’ont pas nécessairement eu le temps d’atteindre une température ≤ 10 °C. Cela est acceptable du moment que le processus de refroidissement a commencé.

CONTENANTS D’ÉCHANTILLONS D’EAU :

L’analyse des échantillons d’eau contenant des matières organiques extractibles est effectuée au moyen de la procédure dite de la « bouteille entière », où l’échantillon est extrait en entier et la bouteille rinçée avec un solvant pour éviter la perte d’analyse en raison de l’adsorption par les parois du contenant. Par conséquent, des contenants supplémentaires sont requis pour le CQ du laboratoire (échantillons en duplicata et matrices enrichies). De manière similaire, dans le cas de l’analyse de matières organiques volatile, des flacons supplémentaires sont requis pour le CQ du laboratoire ainsi que des échantillons répétés, car lorsqu’un flacon a été échantillonné il ne peut plus être utilisé pour d’autres analyses. Vous devriez consulter le laboratoire afin de connaître le nombre de flacons requis.

Des échantillons multiples peuvent être requis pour les analyses de matière inorganique, puisque les différentes analyses de matériau inorganique peuvent requérir des contenants différents et posséder des exigences de conservation également différentes.

ÉCHANTILLONS D’EAU NÉCESSITANT UNE ANALYSE DES HAP :

Les hydrocarbures aromatiques polycycliques s’adsorbent fortement aux particules. Ainsi, l’analyse d’un échantillon d’eau contenant des particules pourrait être anormalement élevée par rapport aux HAP réellement dissous dans l’eau. Cela est également vrai pour d’autres matières organiques hydrophobes comme les PCB. La filtration n’est pas recommandée pour les HAP et les composés organiques en raison des pertes d’adsorption par filtration.

ÉCHANTILLONS D’EAU NÉCESSITANT UNE ANALYSE DU CHROME HEXAVALENT :

Dans le cas du chrome hexavalent dissous dans l’eau, les échantillons sont filtrés sur le terrain à travers une membrane de 0,45 µm, et dans les 24 heures de l’échantillonnage le pH est ajusté à l’intérieur d’un intervalle de 9,3 à 9,7 par l’ajout d’une solution tampon. Les échantillons peuvent également être conservés avec de l’hydroxyde de sodium. Les échantillons de chrome hexavalent total
sont conservés sans filtration. Les échantillons non protégés par un agent de conservation doivent être analysés dans les 24 heures de l’échantillonnage.

CONTENANTS D'ÉCHANTILLONS DE SOL ET DE SÉDIMENTS

Dans le cas des composés organiques, chaque analyse requiert environ 10 g d’échantillon, par conséquent de nombreuses analyses peuvent être effectuées sur des sous-échantillons pris dans un plein contenant de 60, 125 ou 250 ml de sol. Un seul contenant suffit normalement pour les analyses de matières inorganiques. Dans le cas des paramètres physiques et des analytes de matière inorganique stable comme le chlorure et le pH, des échantillons peuvent être recueillis dans des sacs en plastique conçus pour la collecte de sols; toutefois, on recommande l’utilisation de bocaux en verre en raison du risque potentiel d’exposition pour le personnel de laboratoire aux échantillons hautement contaminés.

Les échantillons de sol et de sédiment requérant des analyses de COV, de BTEX, de HCP (F1) et de THM sont conservés sur le terrain avec du méthanol ou recueillis à l’aide de dispositifs d’échantillonnage hermétiquement scellés. Pour les BTEX et les HP (F1), il s’agit d’un écart accepté par rapport à la méthode du CCME. Un échantillon supplémentaire recueilli dans un récipient en verre est nécessaire pour établir la teneur en humidité. Chaque lot d’échantillons de sol conservés dans le méthanol nécessite un flacon supplémentaire préalablement rempli de méthanol qui sera utilisé comme blanc de terrain/de transport.

Pour la conservation des échantillons de sol, il faut prélever un échantillon d’environ 5 g. au moyen d’un appareil de carottage, extruder la carotte directement dans une fiole prépesée contenant du méthanol, puis sceller la fiole. La fiole est pesée de nouveau au laboratoire et le poids de l’échantillon est obtenu en calculant la différence.

Note : Les tableaux 3A et 3B ainsi que les notes sous ces tableaux fournissent à l’échantillonneur et aux personnes qui reçoivent les échantillons au laboratoire une liste des exigences relatives au contenant de l’échantillon, à la conservation des échantillons, au stockage des échantillons et au temps de rétention. Le nombre et la taille des conteneurs d’échantillonnage sont fournis à titre indicatif. Consultez toujours le laboratoire avant l’échantillonnage. Le laboratoire fournira un nombre suffisant de contenants appropriés selon l’ampleur des analyses requises. La collecte de conteneurs d’échantillons multiples est encouragée afin d’éviter d’avoir à procéder à un nouvel échantillonnage si l’échantillon est consommé ou compromis pendant le transport ou lors de l’analyse.
Tableau 3A : Exigences de manipulation et de stockage des échantillons de sol et de sédiments

<table>
<thead>
<tr>
<th>SOL et SÉDIMENT Paramètres inorganiques</th>
<th>Contenant</th>
<th>Conservation sur le terrain</th>
<th>Température de stockage</th>
<th>Temps de rétention avec agent de conservation</th>
<th>Temps de rétention sans agent de conservation</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorure, conductivité, taille des particules</td>
<td>Bocal en verre*, couvercle recouvert de Téflon™, PEHD, PET, PP</td>
<td>aucune</td>
<td>> 0 à 6°C ou température ambiante</td>
<td>N/D</td>
<td>30 jours tel que reçu (sans séchage au laboratoire); indéfini lorsque séché</td>
<td>Carter et Gregorich 2008 Tableau 4.1 MEO</td>
</tr>
<tr>
<td>Cyanure (CN⁻)</td>
<td>Bocal en verre*, couvercle recouvert de Téflon™, PEHD</td>
<td>Protéger de la lumière</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>14 jours tel que reçu</td>
<td>SW-846 c. 3 2007</td>
</tr>
<tr>
<td>Fraction de carbone organique (FCO), azote total</td>
<td>Bocal en verre*, couvercle recouvert de Téflon™, PEHD, PET, PP</td>
<td>aucune</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>28 jours tel que reçu (sans séchage au laboratoire); indéfini lorsque séché au laboratoire</td>
<td>SW-846 c. 3 2007 Carter et Gregorich 2008</td>
</tr>
<tr>
<td>Chrome hexavalent, soufre élémentaire</td>
<td>Bocal en verre*, couvercle recouvert de Téflon™, PEHD</td>
<td>aucune</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>30 jours tel que reçu</td>
<td>SW-846 c. 3 2007</td>
</tr>
<tr>
<td>Métaux, RAS, BSEC</td>
<td>Bocal en verre*, couvercle recouvert de Téflon™, PEHD</td>
<td>aucune</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>180 jours tel que reçu (sans séchage au laboratoire); Indéfini lorsque séché</td>
<td>SW-846 c. 3 2007 Carter et Gregorich 2008</td>
</tr>
<tr>
<td>Mercure, méthymercure</td>
<td>Bocal en verre*, couvercle recouvert de Téflon™, PEHD</td>
<td>aucune</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>28 jours</td>
<td>SW-846 c. 3 2007</td>
</tr>
<tr>
<td>pH</td>
<td>Bocal en verre*, couvercle recouvert de Téflon™, PEHD, PET, PP</td>
<td>aucune</td>
<td>> 0 à 6°C ou température ambiante</td>
<td>N/D</td>
<td>30 jours tel que reçu</td>
<td>SW-846 c. 3 2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOL et SÉDIMENT Paramètres organiques</th>
<th>Contenant</th>
<th>Conservation sur le terrain</th>
<th>Température de stockage</th>
<th>Temps de rétention avec agent de conservation</th>
<th>Temps de rétention sans agent de conservation</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEX, PHCs (F1)⁷, THM, COV⁵</td>
<td>Flacons en verre de 40 à 60 mL (chargés de méthanol comme agent de conservation, pré-pesés)⁴ ET bocal en verre* (pour la teneur en humidité) [des échantillonneurs hermétiques sont une solution de rechange acceptable ¹, ¹⁴]</td>
<td>Méthanol (le NaHSO₄ aqueux est une solution de rechange acceptable si requis pour respecter les SDL)⁵, ⁶, ¹⁴</td>
<td>> 0 à 6°C</td>
<td>40 jours avec du méthanol; 14 jours avec du NaHSO₄ aqueux</td>
<td>Échantillons hermétiques : stabiliser avec du méthanol ou du NaHSO₄ aqueux dans les 48 h de l’échantillonnage¹⁷</td>
<td>SW-846 c. 4 2007</td>
</tr>
<tr>
<td>1,4-Dioxane⁸</td>
<td>Peut être échantillonné comme COV ou ABN</td>
<td>> 0 à 6°C</td>
<td>14 jours</td>
<td>N/D</td>
<td></td>
<td>SW-846 c. 4 2007</td>
</tr>
<tr>
<td>HCP (F2–F4)</td>
<td>Bocal en verre à grande ouverture*, couvercle recouvert de Téflon™</td>
<td>aucune</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>Extrait dans les 14 jours, analyse de l’extrait dans les 40 jours</td>
<td>Méthode de référence du standard pancanadien relatif aux hydrocarbures pétroliers dans le sol – Méthode de 1er volet</td>
</tr>
<tr>
<td>Paramètres inorganiques</td>
<td>Contenant*</td>
<td>Conservation sur le terrain</td>
<td>Température de stockage</td>
<td>Temps de rétention avec agent de conservation</td>
<td>Temps de rétention sans agent de conservation</td>
<td>Référence</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Ammoniac, nitrate + nitrite</td>
<td>PEHD18 ou verre*</td>
<td>H₂SO₄</td>
<td>> 0 à 6°C</td>
<td>28 jours</td>
<td>3 jours</td>
<td>SM 1060 (conservé) MECB (non conservé)</td>
</tr>
<tr>
<td>N total, P total</td>
<td>PEHD18 ou verre*</td>
<td>H₂SO₄ ou HCl</td>
<td>> 0 à 6°C</td>
<td>28 jours</td>
<td>3 jours</td>
<td>SM 1060 (conservé) MECB (non conservé)</td>
</tr>
<tr>
<td>Chlorure, conductivité, fluorure, sulfate</td>
<td>PEHD18 ou verre*</td>
<td>aucune</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>28 jours</td>
<td>SM 1060</td>
</tr>
<tr>
<td>Couleur, nitrite, nitrate, o-phosphate</td>
<td>PEHD18 ou verre*</td>
<td>aucune</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>3 jours16</td>
<td>MECB</td>
</tr>
<tr>
<td>Cyanure (CN⁻)</td>
<td>PEHD18 ou verre*</td>
<td>NaOH pour un pH > 12 Protéger de la lumière</td>
<td>> 0 à 6°C</td>
<td>14 jours</td>
<td>Doit être conservé sur le terrain</td>
<td>SM 1060</td>
</tr>
<tr>
<td>Chrome hexavalent</td>
<td>PEHD18 ou verre*</td>
<td>solution tampon pour une cible de pH de 9,3 à 9,7 ou 1 mL de NaOH à 50 % par 125 mL d’échantillon et</td>
<td>> 0 à 6°C</td>
<td>28 jours</td>
<td>24 heures</td>
<td>SM 3500 (tampon) EPA 1669 (NaOH) SM 1060 (sans conservation)</td>
</tr>
</tbody>
</table>

* Les bocaux en verre peuvent être transparents ou ambrés. Les échantillons de COSV et d’autres composés organiques extractibles doivent être soumis dans des bocaux en verre ambrés.

PEHD = polyéthylène haute densité; PET = polyéthylène téréphtalate; PP = polypropylène; BSEC = bore soluble à l’eau chaude; THM = trihalométhanes; COV = composés organiques volatils; BTEX = benzène, toluène, éthylbenzène, xylènes; HCP = hydrocarbures pétroliers; CP = chlorophénols; BPC = biphényles polychlorés; PO = pesticides organochlorés, Pest. et Herb. = Pesticides, Herbicides, Fongicides

N/D = non disponible

Les notes de bas de page 1 à 18 se trouvent sous le Tableau B

Tableau 3B: Exigences de manipulation et de stockage des échantillons d’eau
<table>
<thead>
<tr>
<th>Paramètres organiques</th>
<th>Contenant</th>
<th>Conservation sur le terrain</th>
<th>Température de stockage(^3)</th>
<th>Temps de rétention avec agent de conservation(^3)</th>
<th>Temps de rétention sans agent de conservation(^3)</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEX, HP (F1), THM, COV;</td>
<td>Flacons en verre de 40 à 60 mL (minimum de 2)(^{15}) (sans espace de tête)</td>
<td>NaHSO(_4) ou HCl pour un pH < 2(^{13}) ou Na(_2)S(_2)O(_3) si chloré</td>
<td>> 0 à 6°C</td>
<td>14 jours</td>
<td>7 jours</td>
<td>SW-846 c. 4 2007</td>
</tr>
<tr>
<td>1,4-Dioxane(^9)</td>
<td>Peut être échantillonné comme COV ou ABN</td>
<td></td>
<td>> 0 à 6°C</td>
<td>14 jours</td>
<td>14 jours</td>
<td>SW-846 c. 4 2007</td>
</tr>
<tr>
<td>HCP (F2–F4)(^9)</td>
<td>Bocal en verre ambré, couvercle recouvert de Téflon(^{10})</td>
<td>NaHSO(_4) ou HCl pour un pH < 2(^{13})</td>
<td>> 0 à 6°C</td>
<td>14 jours</td>
<td>7 jours</td>
<td>SW-846 3511 (avec cons.) SW-846 c. 4 2007 (sans cons.)</td>
</tr>
<tr>
<td>ABN, CP, PO, HAP, Pest. et herb.(^9)</td>
<td>Bocal en verre ambré, couvercle recouvert de Téflon(^{10})</td>
<td>Aucune ou NaHSO(_4) pour un pH < 2, Na(_2)S(_2)O(_3) si chloré</td>
<td>> 0 à 6°C</td>
<td>14 jours(^{17})</td>
<td>7 jours</td>
<td>SW-846 c. 4 2007 SW-846 3511</td>
</tr>
<tr>
<td>SPFO</td>
<td>Bocal en verre ambré, couvercle recouvert de polyéthylène(^{15}) (les couvercles recouverts de Téflon(^{10}) ne peuvent pas être utilisés pour le SPFO)</td>
<td>Aucune ou NaHSO(_4) pour un pH < 2, Na(_2)S(_2)O(_3) si chloré</td>
<td>> 0 à 6°C</td>
<td>14 jours(^{17})</td>
<td>7 jours</td>
<td>SW-846 c. 4 2007 SW-846 3511</td>
</tr>
<tr>
<td>Dioxines et furanes, BPC(^9)</td>
<td>Bouteille de verre ambré, couvercle recouvert de Téflon(^{10})</td>
<td>Aucune Na(_2)S(_2)O(_3) si chloré</td>
<td>> 0 à 6°C</td>
<td>N/D</td>
<td>Durée indéfinie</td>
<td>SW-846 c. 4 2007</td>
</tr>
</tbody>
</table>
Glycols
Flacons en verre de 40 à 60 mL (minimum de 2)
NaHSO₄ ou HCl pour un pH < 2
> 0 à 6°C
14 jours
7 jours
SW-846 3511 (avec cons.)
SW-846 c. 4 2007 (sans cons.)

EAU
Paramètres microbiologiques
<table>
<thead>
<tr>
<th>Contenant*</th>
<th>Conservation sur le terrain</th>
<th>Température de stockage</th>
<th>Temps de rétention avec agent de conservation</th>
<th>Temps de rétention sans agent de conservation</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes</td>
<td>Verre stérile ou plastique</td>
<td>Na₂S₂O₃</td>
<td>> 0 à 6°C</td>
<td>30 heures</td>
<td>N/D</td>
</tr>
<tr>
<td>Cyanobactéries</td>
<td>N/D</td>
<td>Solution de Lugol</td>
<td>> 0 à 6°C</td>
<td>5 jours</td>
<td>30 heures</td>
</tr>
</tbody>
</table>

* Les bocaux en verre peuvent être transparents ou ambrés. Les échantillons de COSV et d’autres composés organiques extractibles doivent être soumis dans des bocaux en verre ambrés.

BTEX = benzène, toluène, éthylbenzène, xylènes; CP = chlorophénols; PEHD = polyéthylène haute densité; PO = pesticides organochlorés; P et H = pesticides and herbicides; BPC = biphényles polychlorés; HCP = hydrocarbures pétroliers; THM = trihalométhanes; COV = composés organiques volatils; N/D = non disponible

1. Un contenant de sol est généralement suffisant pour les analyses de composés organiques accompagné d’un autre contenant pour les composés organiques extractibles. Un contenant séparé est requis pour l’analyse de la teneur en humidité du BTEX, du THM, des COV et des HCP (F1).
2. La température de stockage fait référence au stockage en laboratoire. Les échantillons devraient être refroidis et transportés dès que possible après leur collecte.
3. Le temps de rétention correspond à l’intervalle de temps entre le moment de la collecte de l’échantillon et le moment où la préparation/analyse est entreprise. Pour les échantillons stabilisés avec du méthanol, le temps maximal de rétention de l’extrait méthanolique est de 40 jours. Il est recommandé de séparer le méthanol du sol.
4. À titre de mesure de remplacement, l’US EPA a étudié des dispositifs d’échantillonnage hermétiques pouvant recevoir et sceller un échantillon simple. L’échantillon est soumis tel quel au laboratoire où il est extrudé dans un solvant d’extraction. Les échantillons doivent être reçus au laboratoire dans les 48 heures de l’échantillonnage. (Veuillez noter que des échantillons répétés sont nécessaires pour l’extraction du bisulfate et du méthanol pour tous les échantillons, en plus d’échantillons enrichis et de duplicatas de laboratoire)
5. L’US EPA et le MEO possèdent des procédures de conservation sur le terrain dûment approuvées. Des flacons pré-pesés contenant un poids connu de méthanol utilisé comme agent de conservation (ou de bisulfate de sodium aqueux lorsqu’un SDL est requis) sont envoyés sur le terrain. Les échantillons (approximativement 5 g) sont extrudés directement dans le flacon. Les flacons sont scellés et transmis directement au laboratoire. Dans la pratique, cette technique nécessite le plus grand soin pour éviter les pertes de méthanol en raison d’éclaboussures ou de fuites du flacon.
6. Le méthanol est un solvant d’extraction de qualité supérieure pour les COV comparativement au bisulfate de sodium. Toutefois, les échantillons conservés au moyen du méthanol possèdent une LD élevée par rapport au bisulfate de sodium aqueux. Un échantillon distinct conservé dans le bisulfate ou un échantillon hermétiquement scellé peut être soumis au moment de l’échantillonnage s’il est impossible d’atteindre le SDL requis au moyen des échantillons conservés dans le méthanol – contactez le laboratoire pour savoir si un échantillon distinct doit être recueilli.
7. Dans le cas du BTEX et des HCP (F1), le préremplissage de conteneurs d’échantillonnage avec du méthanol utilisé comme agent de conservation constitue un écart acceptable de la méthode du CCME.
8. Le 1,4 dioxane peut être analysé comme s’il s’agissait d’un COV ou d’un ABN. Lorsque le sol est analysé comme un COV, il est possible soit d’utiliser un échantillon conservé sur le terrain (du bisulfate sera probablement nécessaire pour atteindre le SDL) ou d’extraire et d’analyser l’aliquote d’un échantillon de sol tel que reçu.

10. Règle générale dans le cas des métaux et du chrome hexavalent, les eaux souterraines sont filtrées sur le terrain et conservées tandis que les eaux de surface ne sont pas filtrées avant d’être conservées. Si la filtration sur le terrain n’est pas possible, filtrer en laboratoire et conserver dès que possible. Cela doit être noté sur le CA. Les échantillons de métaux totaux et les métaux dissous filtrés sur le terrain peuvent être conservés au laboratoire dans leur contenant original. Les échantillons doivent reposer pendant 16 heures avant de procéder au sous-échantillonnage.

11. Les échantillons de matières organiques extractibles aqueuses doivent être protégés de la lumière. Lorsqu’il est impossible d’utiliser des bouteilles ambrées, le verre devrait être recouvert d’une feuille d’aluminium.

13. Conservez afin de réduire la biodégradation, toutefois une effervescence ou un dégazage important peut se produire dans certains échantillons. Dans un tel cas, rincez l’agent de conservation trois fois avec l’échantillon que vous présenterez au laboratoire comme étant non conservé.

14. Vous pouvez également obtenir une période de rétention plus longue en congelant des échantillons hermétiques dans les 48 heures suivant le prélèvement selon la méthode D6418-09 de l’ASTM; cependant la stabilité du stockage doit être validée par le laboratoire, et les pertes ne doivent pas excéder 10%.

16. Un temps de rétention de trois jours n’est pas toujours facilement réalisable, notamment pour les échantillons prélevés dans les lieux éloignés. Les laboratoires devraient commencer l’analyse dès que possible dans les 48 heures de la réception. Le dépassement du temps de rétention augmente l’incertitude des résultats, mais ne signifie pas nécessairement que les résultats sont compromis.

17. Confirmez la stabilité des analytes cibles à pH acide avant d’utiliser un agent de conservation acide.

18. Le PEHD est à privilégier. D’autres plastiques, comme le PET ou le PP, peuvent être utilisés pourvu qu’ils soient exempts des analytes d’intérêt.
3.1 Sous-échantillonnage

Les procédures décrites ci-dessous couvrent des situations courantes lors du sous-échantillonnage d’échantillons solides et liquides en laboratoire. Lorsque de telles situations surviennent, ces procédures doivent être suivies. Toutes les mesures prises pour obtenir des échantillons représentatifs autres que celles décrites ci-dessous doivent être notées dans le certificat d’analyse ou dans un rapport écrit afin que la personne qualifiée (PQ) puisse évaluer correctement les données et être en mesure de déterminer si la qualité des données est suffisante pour fonder leurs décisions.

3.1.1 Procédure : Sols et sédiments – paramètres inorganiques et autres paramètres réglementés

1. Avant de procéder à l’homogénéisation ou au séchage, les échantillons doivent être inspectés par le laboratoire pour déceler d’éventuelles conditions de phases multiples (eau libre, produits pétroliers, etc.) ou d’autres anomalies. De petites quantités d’eau libre ou de produits pétroliers peuvent être mélangées avec l’échantillon, mais il est essentiel de séparer de grandes quantités d’eau libre ou de produits pétroliers. La PQ doit être contactée afin de s’entendre sur la manière de procéder. Les anomalies et les mesures adoptées doivent être inscrites sur le certificat ou le rapport d’analyse.

En raison des pertes potentielles par volatilisation dans le cas du cyanure ou de possibles réactions d’oxydoréduction dans le cas du chrome hexavalent, les sous-échantillons pour ces essais sont tirés de l’échantillon tel que reçu. Les sous-échantillons pour mesurer le pH peuvent être pris de l’échantillon tel que reçu ou d’une aliquote séchée et broyée comme cela est décrit ci-dessous.

L’échantillon est mélangé aussi bien que possible, et plusieurs aliquotes sous prélevées pour obtenir le poids souhaité. Les échantillons d’argile dure qui ne peuvent être mélangés sont émiettés à l’aide d’une spatule à différents endroits dans le bocal. Les pierres, les brindilles et d’autres corps étrangers sont retirés des sous-échantillons. Afin de garantir l’obtention d’un sous-échantillon représentatif, une aliquote d’une taille minimale de 10 g est prélevée.

2. Pour les essais portant sur des sols inorganiques ou des sédiments, les échantillons sont séchés à l’air ou dans un four à une température de ≤ 60 °C (pour éviter la perte potentielle d’analyses volatils). Les temps de séchage varient en fonction de la taille, du niveau d’humidité et du type de four. Les laboratoires devraient établir les temps de séchage minimaux en tenant compte des conditions/des types d’échantillons de leurs installations. Afin d’établir la teneur en humidité, un aliquote distinct est prélevé et séché jusqu’à l’obtention d’un poids constant à 105 °C, ce qui se fait habituellement en 2 à 4 heures.

Les pierres, les brindilles et d’autres corps étrangers sont retirés des sous-échantillons.

Il est nécessaire de procéder à une réduction physique des agrégats d’argile de grande taille.

Les échantillons séchés sont ensuite passés dans un tamis de 2 mm. Toute partie qui ne passe pas à travers ce tamis est éliminée. Des aliquotes d’au moins 5 g provenant de la partie de < 2 mm de l’échantillon sont utilisées pour l’analyse du chlorure, de la conductivité et du bore soluble à l’eau chaude. Il est recommandé d’utiliser des aliquotes d’au moins 1 g pour les métaux et le rapport d’adsorption du sodium. Des aliquotes de plus petite taille peuvent être utilisées à la condition qu’il n’y ait pas de perte de précision.
3.1.2 Procédure : Sols et sédiment – Paramètres organiques

1. Avant de procéder au sous-échantillonnage, les échantillons doivent être inspectés pour déceler d’éventuelles conditions de phases multiples (eau libre, produits pétroliers, etc.) ou d’autres anomalies. De petites quantités d’eau libre ou de produits pétroliers peuvent être mélangées avec l’échantillon, mais il est essentiel de séparer de grandes quantités d’eau libre ou de produits pétroliers et de les retenir pour une analyse éventuelle. La PQ doit être contactée afin de s’entendre sur la manière de procéder. Les anomalies et les mesures adoptées doivent être inscrites sur le certificat ou dans le rapport d’analyse.

2. La pratique normale consiste à préparer les échantillons nécessitant une analyse de composé organique semi-volatil tel que reçu (sans séchage). Les échantillons requérant une analyse de composés relativement non volatils comme les ABN, les dioxines, les PC, les PO, les pesticides et les BPC peuvent être séchés à l’air jusqu’à la disparition de toute humidité visible pour être par la suite désagrégés puis homogénéisés. Les échantillons peuvent également être séchés chimiquement en les mélangeant avec une quantité égale de sulfate de sodium anhydre, où jusqu’à ce que l’échantillon ressemble à une poudre à écoulement libre. La prudence est de mise en raison de la production de chaleur, qui peut provoquer des pertes de composés plus volatils comme les HAP légers. Une autre solution consiste à sécher les échantillons pendant l’extraction au moyen d’un azéotrope au toluène (p.ex., des extractions à l’aide d’un appareil Dean-Stark utilisant le toluène comme solvant d’extraction, une technique couramment utilisée pour les PCDD/F selon la méthode US EPA 1613B et pour les BPC selon la méthode US EPA 1668C). Les échantillons peuvent également être extraits après leur réception en utilisant un solvant miscible à l’eau. Les pierres, les brindilles et d’autres corps étrangers sont retirés des sous-échantillons. Les HAP et d’autres analytes relativement volatils sont extraits tels que reçus.

3. Les échantillons conservés sur le terrain nécessitant une analyse des analytes volatils (COV, BTEX, HCP (F1), THM) sont traités au fur et à mesure où ils sont reçus. Les échantillons recueillis dans des dispositifs d’échantillonnage hermétiques sont extrudés directement dans le solvant d’extraction.

4. L’utilisation de sulfate de sodium comme agent de séchage des échantillons devant être analysés pour déceler la présence de HCP (F2, F3, F4 et F4G) pourrait provoquer une réaction exothermique, et doit donc être proscrite. Une quantité minimale et estimée de 5 g de poids sec de sol tel que reçu est prélevée pour analyse. Le fluide d’extraction devrait être ajouté immédiatement après la pesée afin de minimiser les pertes par volatilisation.

5. Pour toutes les autres analyses de composés organiques, l’échantillon est mélangé aussi bien que possible, et plusieurs aliquotes sont prélevées pour obtenir le poids souhaité. Les échantillons d’argile dure qui ne peuvent être mélangés sont émiettés à l’aide d’une spatule à différents endroits dans le bocal. Les pierres, les brindilles et d’autres corps étrangers sont retirés des sous-échantillons. Le fluide d’extraction devrait être ajouté immédiatement après la pesée afin de minimiser la dégradation de l’échantillon.
3.1.3 **Procédure : Échantillons d’eau – Paramètres inorganiques et autres paramètres réglementés**

Avant de procéder au sous-échantillonnage, les échantillons sont inspectés pour y déceler des particules, et la quantité approximative de particules visibles (v/v) est notée. Lorsque la quantité de particules est > 5 % v/v, la PQ doit être contactée, et il faut lui demander comment procéder. Il peut être nécessaire de séparer les solides et de les traiter comme des échantillons distincts. En présence d’échantillons à phases multiples (généralement des produits pétroliers de surface), la phase non aqueuse est retirée de tous les sous-échantillons. Le liquide non aqueux doit être retenu pour une analyse éventuelle. Ces anomalies et les actions prises doivent être notées dans le certificat d’analyse ou le rapport analytique.

Conductivité et pH

Il faut éviter de secouer, diluer ou alterer les échantillons de quelque manière que ce soit, car cela peut altérer le résultat. Il faut verser l’échantillon dans le récipient à échantillon ou le récipient de mesure.

Ammoniac, chlorure, couleur, cyanure, nitrates, nitrites, phosphore, sulfate

Secouer et verser l’échantillon. Une aliquote peut être filtrée ou décantée pour éviter des problèmes avec les instruments. Veuillez noter que dans le cas des paramètres du phosphore, seuls les échantillons devant être analysés pour les essais de phosphore « dissous » peuvent être filtrés.

Métaux dissous, incluant le mercure, le méthylmercure et le chrome hexavalent

En général, les eaux souterraines requérant de telles analyses sont filtrées et conservées sur le terrain. Les eaux de surface et les eaux potables sont généralement conservées non filtrées et analysées pour détecter la présence de métaux totaux. Les échantillons qui nécessitent une analyse pour détecter la présence de métaux dissous, de mercure, de méthylmercure, ou de chrome hexavalent dans les eaux souterraines sont filtrés au moyen d’un filtre de 0,45 μm puis immédiatement conservés sur le terrain tel que décrit dans le tableau 3B. Lorsqu’il est impossible de procéder à la filtration/conservation sur le terrain, les échantillons peuvent être filtrés et conservés dès que possible au laboratoire. Toutefois, cet écart doit être indiqué sur le certificat d’analyse avec une mise en garde que les valeurs pourraient ne pas refléter les concentrations au moment de l’échantillonnage. Il est important de noter que dans certaines provinces ou certains territoires, la filtration de métaux dissous en laboratoire n’est pas autorisée. Les échantillons conservés, mais non filtrés ne peuvent être filtrés en laboratoire. Le matériel filtrant doit pouvoir produire des niveaux < SDL des analytes d’intérêt.

Métaux totaux

Les échantillons aqueux nécessitant une analyse pour y détecter des métaux totaux peuvent être conservés sur le terrain ou au laboratoire. Lorsque les échantillons sont conservés au laboratoire, ils doivent demeurer dans leur contenant d’origine pour au moins 16 heures avant de procéder à la digestion ou à l’analyse.

Note : les RCQE sont basées sur les métaux « totaux ». Les normes du MECCO pour l’eau souterraine sont basées sur les métaux « dissous ». Peut varier selon les territoires et provinces.
Solides totaux en suspension, solides totaux dissous, turbidité

Secouer et verser l’échantillon. Les échantillons ne doivent pas être filtrés ou dilués avant l’analyse.

3.1.4 **Échantillons d’eau – Paramètres organiques**

Composés organiques volatils

Les échantillons de composés volatils organiques (COV, BTEX, HCP (F1), THM) sont traités différemment des échantillons organiques extractibles. Les échantillons doivent être reçus dans des flacons de COV répétés.

1. Lors de l’échantillonnage, les flacons ou les bouteilles doivent être remplis lentement jusqu’au bord du contenant de manière à former un dôme ou un ménisque convexe. Une légère perte de l’échantillon peut se produire lorsque le couvercle est posé. Au moment de fermer la cloison ou le couvercle, celui-ci doit être en contact avec l’échantillon afin qu’aucun air ne soit emprisonné dans le contenant de l’échantillon, et qu’aucune bulle d’air ne soit présente au fond du flacon ou du bocal lorsqu’on le retourne. Le revêtement en Téflon™ et non l’endos de la cloison en silicone ou en caoutchouc doit être en contact avec l’échantillon.

2. Avant de procéder à l’analyse, les échantillons sont examinés pour y déceler des particules, et la quantité approximative de particules visibles (v/v) est notée. Les échantillons sont également examinés pour détecter un espace de tête, et si une bulle d’air apparaît au fond du flacon lors de son renversement (> approximativement 2 mL de volume d’air), l’échantillon peut être compromis et ne devrait pas être analysé. Lorsque le client exige une analyse, les données rapportées doivent contenir une note à ce sujet. Il importe de souligner qu’il a été établi que la présence d’une bulle d’air pouvant atteindre 5 % du volume total du contenant d’échantillon ne cause pas de perte importante pour la plupart des COV si les échantillons sont stockés de manière appropriée.

3. Les systèmes de purge et les échantillonneurs automatiques modernes permettent l’aliquotage direct et l’ajout d’étalons de substitution ou internes sans avoir à ouvrir le flacon.

4. Dans le cas des trappes, des appareils de purge et des systèmes d’espace de tête plus anciens, le flacon est ouvert et l’aliquote est retirée pour être immédiatement placée dans un récipient d’analyse qui sera scellé sans tarder. Après avoir procédé à un sous-échantillonnage, le flacon d’échantillon est compromis et ne peut plus être utilisé pour une nouvelle analyse.

5. Lorsque l’échantillon contient une couche non aqueuse, il ne peut généralement pas être utilisé pour une analyse. Lorsque le client exige une analyse de la fraction aqueuse de l’échantillon, une aliquote peut être prélevée en dessous de la couche non aqueuse à l’aide d’une seringue pour être analysée. Les anomalies et les mesures prises doivent être notées dans le certificat d’analyse.

Composés organiques extractibles

Les analytes organiques extractibles ont tendance à être hydrophobes et à s’adsorber au flacon d’échantillonnage et à toute particule dans l’échantillon. En raison de ce fait, la méthode d’analyse utilisée est celle de « l’échantillon complet » où le contenu entier du bocal contenant l’échantillon est extrait, la bouteille d’échantillon est rinçée avec un solvant et les extraits combinés utilisés pour l’analyse. Comme les composés organiques ont tendance à s’adsorber sur les particules, si des composés organiques dissous sont requis, des précautions doivent être prises pour...
exclure les particules au moment de l’échantillonnage. De façon semblable, les composés organiques ont tendance à s’adsorber aux matériaux de filtre, la filtration n’est donc pas une option acceptable.

1. Avant de procéder à l’extraction, l’échantillon est examiné pour détecter des particules ou une phase non aqueuse. En présence d’une phase non aqueuse, la quantité de particules, le cas échéant, est notée. L’ensemble de l’échantillon est extrait, la bouteille d’échantillonnage est rincée avec un solvant et l’extrait combiné est utilisé pour l’analyse.

2. Lorsqu’un reflet à la surface est observé, ce fait est noté, mais l’échantillon est traité comme indiqué dans le paragraphe 1 ci-dessus.

3. Lorsqu’une couche non aqueuse importante, mais séparable est observée, la PQ doit être contactée pour obtenir des instructions sur la façon de procéder. En l’absence d’instructions, la couche non aqueuse est séparée de la couche aqueuse, son volume est estimé et elle est conservée pour analyse éventuelle. La couche aqueuse est extraite comme indiqué dans le paragraphe 1 ci-dessus. L’approche privilégiée consiste à analyser les deux phases. Lorsqu’une seule des deux phases est analysée, il faut l’indiquer clairement sur le certificat d’analyse.

3.1.5 Échantillons biologiques

Les concentrations de substances dans les échantillons biologiques peuvent varier en fonction de plusieurs facteurs, notamment le type de tissu consommé, le métabolisme des composés par espèces végétales ou animales et les méthodes de cuisson et de préparation des aliments. Selon les objectifs de l’utilisation des données, ces questions doivent prises en compte et déterminées à la phase de conception de la campagne d’échantillonnage pour faire en sorte que les échantillons soumis au laboratoire d’essai soient préparés pour la consommation de la même manière que celle pratiquée par la communauté touchée et analysés pour les espèces chimiques appropriées. On peut trouver d’autres directives sur l’échantillonnage et l’analyse des échantillons biologiques d’aliments dans Meridian (2011) et Santé Canada (2011).
4 MÉTHODES D’ANALYSE

Les méthodes d’analyse décrites dans cette section sont tirées des sources suivantes :

9. Direction des services de laboratoires (LaSB) du ministère de l’Environnement de l’Ontario (MEO); les demandes de renseignements au sujet de ces méthodes peuvent être transmises à l’adresse LaboratoryServicesBranch@ontario.ca.

RÉSUMÉS DES MÉTHODES D’ANALYSE

Dans la majorité des cas, plus d’une technique de préparation ou d’analyse peut être utilisée pour la plupart des analytes. Le mérite des diverses techniques est abordé dans les résumés des méthodes d’analyse présentées dans les pages qui suivent, mais en général, dans la mesure où une procédure spécifique respecte les objectifs de qualité des données (OQD) (précision, exactitude, sensibilité) décrits à la section 6 du présent recueil, elle est jugée « adaptée à l’objectif visé » et peut être utilisée.

Les méthodes examinées ci-dessous présentent la technologie d’analyse actuelle la plus courante. Il ne s’agit pas d’exclure les technologies nouvelles et émergentes comme la spectrométrie de masse à temps de vol, la spectrométrie de masse avec plasma à couplage inductif (ICP-MS), la chromatographie bidimensionnelle en phase gazeuse (GC x GC), et d’autres qui peuvent fournir une sensibilité ou une spécificité accrue par rapport aux technologies actuelles et qui peuvent également être utilisées dans la mesure où les OQD de la section 6 sont respectées.

Les laboratoires doivent s’assurer que toutes les procédures de la méthode d’analyse sont documentées et fondées sur la version en vigueur de la méthode de référence dûment approuvée. Toutes les modifications apportées à la méthode d’analyse doivent être documentées, et la méthode doit être validée et contenir une déclaration confirmant que la méthode est adaptée.
à l’utilisation prévue en ce qui a trait à la sensibilité, la sélectivité, la plage d’analyse, la précision et le biais de la méthode.

Toutes les exigences de validation, d’assurance et de contrôle de la qualité de la méthode énumérées dans la section 6 doivent être respectées.

Dans plusieurs cas présentés dans les pages qui suivent, il est possible d’analyser conjointement des groupes d’essais. La combinaison de groupes d’essais peut compromettre les conditions d’analyse. De telles combinaisons sont permises uniquement lorsque toutes les normes de performance mentionnées dans les tableaux 6-1 à 6-16 à sont respectées.

4.1 Groupe des paramètres organiques

4.1.1 Composés organiques acides/basiques/neutres (ABN) extractibles

Paramètres

<table>
<thead>
<tr>
<th>Aniline</th>
<th>Phtalate de bis (2-éthylhexyle)</th>
<th>Dinitrotoluène, 2,4-(2,6)-*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biphényle, 1,1'-</td>
<td>Dichlorobenzidine, 3,3'-</td>
<td>Phtalate de di-n-octyle</td>
</tr>
<tr>
<td>Oxyde de bis (2-chloroéthyle)</td>
<td>Phtalate de diéthyle</td>
<td>Esters d’acide phtalique (individuel) †††</td>
</tr>
<tr>
<td>Oxyde de bis (2-chloroisopropyl)</td>
<td>Phtalate de diméthyle</td>
<td></td>
</tr>
<tr>
<td>Chloroaniline, p-</td>
<td>Phthalate de di-n-butylique</td>
<td></td>
</tr>
</tbody>
</table>

* La somme du dinitrotoluène 2,4- et 2,6- est comparée à l’étalon.
††† Le CCME n’a pas établi de liste d’esters d’acide phtalique. Pour les besoins du présent recueil, la liste comprend les composés de phtalate tirés des lignes directrices de l’Ontario.

Tableau 4.1.1

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l’échantillon</td>
<td>Préparation de l’échantillon</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3540C</td>
<td>SW-846, Méthode 3510C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3541</td>
<td>SW-846, Méthode 3520C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3546</td>
<td>SW-846, Méthode 3535A</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3550C</td>
<td>SW-846, Méthode 8270D</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3570</td>
<td>EPA, Méthode 1625C</td>
</tr>
<tr>
<td></td>
<td>Nettoyage de l’échantillon</td>
<td>Analyse</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3610B</td>
<td>SW-846, Méthode 8270D</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3630C</td>
<td>EPA, Méthode 1625C</td>
</tr>
<tr>
<td>Standard Methods</td>
<td>Méthode 6410B</td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td>E3265</td>
<td></td>
</tr>
<tr>
<td>Centre d’expertise en analyse</td>
<td>MA. 400 - Phén. 1.0</td>
<td></td>
</tr>
</tbody>
</table>
Principe de la méthode

Les échantillons aqueux et de sols, tels que reçus, sont enrichis de substituts et extraits à l’aide d’un solvant ou d’un mélange de solvants.

Les échantillons de sol et de sédiments sont normalement séchés en les mélangeant avec un agent desséchant avant l’extraction ou extraits avec un solvant miscible à l’eau. L’extraction des échantillons d’eau doit se faire à un pH < 2 (acide extractible) et > 11 (base neutre extractible). Les extraits sont séchés, concentrés et échangés dans un solvant compatible avec le nettoyage (si nécessaire) ou la technique de détermination utilisée. Un nettoyage avec du gel de silice ou de l’alumine peut être nécessaire pour les échantillons difficiles, et les laboratoires peuvent choisir d’effectuer des nettoyages couramment pour prolonger la vie de la colonne. Voir les méthodes de référence pour plus de détails.

Des étalons internes sont ajoutés après l’exécution de toutes les étapes de préparation et de nettoyage. Les extraits sont stables pendant une période maximale de 40 jours. L’analyse est effectuée par GC-MS en mode de balayage complet ou en mode de détection d’ions déterminés (SIM). Le mode SIM permet des limites de détection plus faibles, tandis que le mode de balayage complet possède une capacité de diagnostic permettant de déceler des analytes non ciblés.

La quantification se fait au moyen de la méthode de l’étalon interne.

La technique GC-MS en mode balayage complet peut également être utilisée pour identifier des composés non ciblés en comparant le spectre de masse de chaque inconnu à une bibliothèque de spectres de masse GC-MS. Les concentrations peuvent être estimées à l’aide du facteur de réponse d’un composé cible similaire. Cette technique peut aussi s’appliquer à des analyses de COV.

4.1.2 Chlorophénols (CP) et composés phénoliques non chlorés (CPNC)

Les chlorophénols et les composés phénoliques non chlorés peuvent être mesurés conjointement avec les ABN (section 4.1.1), à la condition que les exigences sur le SDL soient respectées.

Paramètres

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>environnementale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dichlorophénol, 2,4- 2,5- 2,6- 3,4- 3,5 –	–Phénol
Diméthylephénol, 2,4-**	Composés phénoliques non chlorés**
Dinitrophénol, 2,4-**	Phénols (monohydrique et dihydrique) ††
Monochlorophénol, 2- 3- 4-	Tétrachlorophénol, 2,3,4,5- 2,3,4,6- 3,4,5,6-
Pentachlorophénol (PCP)	Trichlorophénol, 2,3,4- 2,3,5- 2,3,6- 2,4,5- 2,4,6-

* Les composés phénoliques non chlorés comprennent le 2,4-diméthylphénol; le 2,4-dinitrophénol; le 2-méthyl 4,6-dinitrophénol; le 2-nitrophénol; le 1- et le p- cresol (méthylphénol).
** Le CCME n’a pas établi de liste de phénols (mono- et dihydriques) pour la surveillance. Pour les besoins du présent recueil, la liste comprend les composés phénoliques, les composés phénoliques non chlorés, les 4 -hydroxyphénol (hydroquinone) non chlorés et les 3-hydroxyphénol (résorcinol) tirés des lignes directrices de la Colombie-Britannique.
Tableau 4.1.2

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon
SW-846, Méthode 3540C
SW-846, Méthode 3541
SW-846, Méthode 3546
SW-846, Méthode 3550C
SW-846, Méthode 3570
Analyse
SW-846, Méthode 8270D</td>
<td>Préparation de l'échantillon
SW-846, Méthode 3510C
SW-846, Méthode 3520C
SW-846, Méthode 3535A
EPA, Méthode 1653
Analyse
SW-846, Méthode 8270D
EPA, Méthode 1653</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 6410B
Méthode 6420C</td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td>E3119
E3265</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td>MA. 400 - Phe 1.0
MA. 403 - COSV 1.0</td>
</tr>
</tbody>
</table>

Principe de la méthode

Les méthodes de référence du tableau 4.1.2 doivent être suivies avec les ajouts suivants : les échantillons d'eau doivent être acidifiés à pH < 2 avant l'extraction liquide-liquide afin d'exécuter des recouvrements adéquats. Les procédures d'extraction en phase solide (EPS) SW-846, Méthode 3535A ne requiert pas nécessairement d'acidification. Les échantillons sont extraits, transformés en dérivés si nécessaire, et analysés par GC-MS comme décrit au paragraphe 4.1.1.

La dérivatisation, lorsqu’elle est requise, comporte une réaction chimique qui convertit les analytes (phénol et chlorophénol) d'intérêt en leurs esters correspondants, améliorant ainsi la chromatographie et les limites de détection. Les techniques de nettoyage éliminent les interférences qui peuvent avoir des répercussions sur la quantification et dégrader les rendements de la colonne. En général, la dérivatisation n’est pas nécessaire pour atteindre les seuils de déclaration (SDL) requis pour les phénols et les chlorophénols.

4.1.3 1,4-Dioxane

Le 1,4-dioxane peut être mesuré conjointement avec les ABN (section 4.1.1) ou les COV (section 4.1.14).

Paramètres

Dioxane, 1,4-
Principe de la méthode

Le 1,4-dioxane est un composé organique hydrosoluble qui peut être analysé soit comme un composé organique extractible ou un composé organique volatile.

Parce que le 1,4-dioxane se récupère mal avec les techniques d’extraction ou de purge, il est nécessaire de procéder à une dilution isotopique lorsque l’analyte naturel est quantifié à l’aide de l’analogue deutéré (Méthode US EPA 1624C, méthode US EPA 1625C). Tous les aspects de la préparation et de l’analyse autres que la quantification par dilution isotopique sont similaires à l’analyse des composés organiques volatils (tableau 4.1.14) ou des ABN (tableau 4.1.1).

4.1.4 Glycols

- Diéthylène glycol
- Éthylène glycol
- Propylène glycol 1,2-

Tableau 4.1.4

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon pour 8260</td>
<td>Préparation de l'échantillon pour 8260</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 5021A</td>
<td>SW-846, Méthode 5000</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 5035</td>
<td>SW-846, Méthode 5030C</td>
</tr>
<tr>
<td></td>
<td>Préparation de l'échantillon pour 8270</td>
<td>Préparation de l'échantillon pour 8270</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3540C</td>
<td>SW-846, Méthode 3510C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3541</td>
<td>SW-846, Méthode 3520C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3546</td>
<td>SW-846, Méthode 3535A</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3550C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analyse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPA, Méthode 1624C</td>
<td>EPA, Méthode 1624C</td>
</tr>
<tr>
<td></td>
<td>EPA, Méthode 1625C</td>
<td>EPA, Méthode 1625C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 8260C</td>
<td>SW-846, Méthode 8260C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 8270D</td>
<td>SW-846, Méthode 8270D</td>
</tr>
</tbody>
</table>

Centre d'expertise en analyse environnementale

MA. 403 - COSV 1.0
Principe de la méthode

Des échantillons d'eau sont analysés par injection directe aqueuse au moyen de la méthode de chromatographie en phase gazeuse-détecteur à ionisation de flamme (GC-FID). Les échantillons de sol sont soumis à une extraction aqueuse avant l'injection directe de l'extrait aqueux. Cette méthode permet d'obtenir des limites de détection d'environ 5 mg/L, ce qui est bien en dessous des directives réglementaires. Lorsque des seuils de déclaration plus faibles sont nécessaires, les échantillons peuvent être extraits, transformés en dérivés et analysés par GC-MS.

Note : La RCQE est fondée sur le 1,2-propylène glycol.

4.1.5 *Pesticides organochlorés (PO)*

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Aldrin</th>
<th>Hexachlorobenzène</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlordane, alpha- (α-chlordane)*</td>
<td>Hexachlorobutadiène (HCBD)</td>
</tr>
<tr>
<td>Chlordane, gamma- (γ-chlordane)*</td>
<td>Hexachlorocyclohexane, gamma- (γ-HCH, Llindane, γ-BHC†)</td>
</tr>
<tr>
<td>Dichloro diphényl dichloroéthane, (2,2-Bis (p-chlorophényl)-1,1-dichloroéthane, DDD)***</td>
<td>Hexachloroéthane</td>
</tr>
<tr>
<td>Dichloro diphényl éthylène, (1,1-Dichloro-2,2-bis (p-chlorophényl)-éthène, DDE)***</td>
<td>Méthoxychlore</td>
</tr>
<tr>
<td>Dichloro diphényl trichloroéthane; (2,2-Bis (p-chlorophényl)-1,1,1-trichloroéthane, DDT)***</td>
<td>Métolachlore††</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>Pentachlorobenzène††</td>
</tr>
<tr>
<td>Endosulfan I (thiodan sulphate I)**</td>
<td>Tétrachlorobenzène, 1,2,3,4-††</td>
</tr>
<tr>
<td>Endosulfan II (thiodan sulphate II)**</td>
<td>Tétrachlorobenzène, 1,2,3,5-††</td>
</tr>
<tr>
<td>Endrin</td>
<td>Tétrachlorobenzène, 1,2,4,5-††</td>
</tr>
<tr>
<td>Heptachlore</td>
<td>Toxaphène</td>
</tr>
<tr>
<td>Heptachlorépoxide</td>
<td></td>
</tr>
</tbody>
</table>

* La somme de chlordane alpha- et gamma- est comparée à l’étalon.
** La somme d’endosulfan I et II est comparée à l’étalon.
*** La norme relative au DDT s’applique aux concentrations totales de DDT (c.-à-d., la somme des isomères de DDT), la norme relative au DDE s’applique aux concentrations totales de (c.-à-d., la somme des isomères de DDE), et la norme relative au DDD standard s’applique aux concentrations totales de DDD (c.-à-d., la somme de l’isomère de DDD).
† Erronément connu sous l’appellation hexachlorure de benzène (HHC).
†† Peut également être mesuré conjointement avec les ABN.
Tableau 4.1.5

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l’échantillon
SW-846, Méthode 3540C
SW-846, Méthode 3541
SW-846, Méthode 3545A
SW-846, Méthode 3546
SW-846, Méthode 3550C
SW-846, Méthode 3570
Nettoyage de l’échantillon
SW-846, Méthode 3610B
SW-846, Méthode 3620C
SW-846, Méthode 3630C
SW-846, Méthode 3660B
Analyse
SW-846, Méthode 8081B
SW-846, Méthode 8270D
SW-846, Méthode 8276
SW-846, Méthode 8290A
EPA Méthode 1613B
EPA Méthode 1699</td>
<td>Préparation de l’échantillon
SW-846, Méthode 3510C
SW-846, Méthode 3520C
SW-846, Méthode 3535A
Nettoyage de l’échantillon
SW-846, Méthode 3610B
SW-846, Méthode 3620C
SW-846, Méthode 3630C
SW-846, Méthode 3660B
Analyse
SW-846, Méthode 8081B
SW-846, Méthode 8270D
SW-846, Méthode 8276
SW-846, Méthode 8290A
EPA Méthode 1613B
EPA Méthode 1699</td>
</tr>
</tbody>
</table>

Principes de la méthode

Chaque échantillon de sol est extrait dans un solvant ou un mélange de solvants. Les méthodes d'extraction comprennent le procédé d'extraction Soxhlet ou l'utilisation d'un bain à ultrasons suivi par un agitateur vortex. En variante, l'extraction par fluide sous pression peut être utilisée pour des échantillons de sol ou de sédiments.

Chaque échantillon aqueux est extrait avec un solvant ou un mélange de solvants. Après l'extraction, un certain nombre de techniques de nettoyage peuvent être appliqués selon de la matrice de l'échantillon et le déterminant de la méthode d'analyse. L'extrait purifié est concentré pour former un petit volume final.

Les extraits de sol et d'eau peuvent être conservés pendant 40 jours.

Afin de respecter de manière fiable la RCQE pour certains PO, une analyse par spectrométrie de masse à haute résolution (HRMS) est requise. La spectrométrie de masse à ionisation chimique négative a également été utilisée pour le toxaphène.

Cependant, la chromatographie en phase gazeuse à double colonne avec détecteur à capture d'électrons (GC-ECD) est presque aussi sensible, et est couramment utilisée pour de nombreuses applications. La technique de GC-MS peut également être utilisée. La GC-ECD est très
sensible pour les composés fortement chlorés, mais le DCE est non spécifique et peut être sujet à des interférences. Par conséquent, il est nécessaire de procéder au nettoyage de l'échantillon et à la confirmation de la deuxième colonne d'analytes cibles.

Calculs
Lorsqu’une analyse ECD en double colonne est effectuée, les résultats de PO sont calculés pour chaque colonne de façon indépendante. Pour chaque paramètre, si des résultats acceptables et comparables (DRP de moins de 30 %) sont générés par les deux colonnes, il faut faire une moyenne des deux résultats. Sinon, il faut prendre les résultats de la colonne qui donne la meilleure correspondance qualitative avec les normes de référence en ce qui concerne la forme des pics et le temps de retenue.

4.1.6 Composés d’organoétain

Paramètres

<table>
<thead>
<tr>
<th>Tributylétain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclohexylétain</td>
</tr>
<tr>
<td>Triphénylétain</td>
</tr>
</tbody>
</table>

Tableau 4.1.6

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td>Préparation de l'échantillon SW-846, Méthode 3511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyse SW-846, Méthode 8323</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 6710A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 6710B</td>
</tr>
</tbody>
</table>

Principes de la méthode
Les échantillons sont extrait, transformés en dérivés, nettoyés, concentrés et analysés par GC-MS en mode SIM. Les échantillons peuvent être analysés par chromatographie en phase gazeuse à l’aide d’autres détecteurs comme la spectroscopie avec plasma à couplage inductif (ICP) ou la spectrométrie de masse à plasma avec couplage inductif (ICP-MS). Toutefois, afin de respecter la RCQE la plus faible, la technique par HRMS peut être nécessaire. L’EPA a également publié une méthode d’extraction en phase solide s’appuyant sur la chromatographie en phase liquide et la spectrométrie de masse par électronébulisation.
4.1.7 *Acides sulfoniques perfluorés, acides perfluorocarboxyliques et leurs sels*

Dans le tableau, ils sont répertoriés à titre de composant anionique du sel, parce que plusieurs cations différents peuvent être jumelés avec l’anion.

<table>
<thead>
<tr>
<th>Sels d’acide sulfonique</th>
<th>Sels d’acide carboxylique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorobutanesulfonate (PFBS)</td>
<td>Perfluorobutanoate (PFBA)</td>
</tr>
<tr>
<td>Perfluorohexanesulfonate (PFHxS)</td>
<td>Perfluoropentanoate (PFPeA)</td>
</tr>
<tr>
<td>Perfluorooctanesulfonate (PFOS)*</td>
<td>Perfluorohexanoate (PFHxA)</td>
</tr>
<tr>
<td>Perfluoroctane sulfonamide (PFOSA)</td>
<td>Perfluorooctanoate (PFOA)</td>
</tr>
<tr>
<td>Perfluorooctane sulfonamide (PFOSA)</td>
<td>Perfluorononanoate (PFNA)</td>
</tr>
<tr>
<td>Perfluorobutanesulfonate (PFBS)</td>
<td>Perfluorodecanoate (PFDA)</td>
</tr>
<tr>
<td>Perfluorohexanesulfonate (PFHxS)</td>
<td>Perfluoroundecanoate (PFUnA)</td>
</tr>
<tr>
<td>Perfluorooctanesulfonate (PFOS)*</td>
<td>Perfluorododecanoate (PFDoA)</td>
</tr>
</tbody>
</table>

* Ces composés peuvent être exprimés sous forme d’acides ou de sels.

Bien qu’il n’existe pas pour l’instant de recommandations du CCME pour les acides sulfoniques perfluorés et les acides perfluorocarboxyliques, ce groupe a été inclus compte tenu de l’intérêt récent pour ces paramètres. Cette liste comprend les composés les plus couramment analysés. D’autres composés perfluorés peuvent être déterminés en utilisant la même procédure.

Tableau 4.1.7

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td>Préparation and analyse EPA 537</td>
</tr>
<tr>
<td>MECCO</td>
<td>Préparation and analyse E3506</td>
<td>Préparation and analyse E3457</td>
</tr>
</tbody>
</table>

Principes de la méthode

Le perfluorooctanesulfonate (PFOS) est un composé extrêmement stable dans les applications industrielles et dans l'environnement en raison des liaisons carbone-fluor. Le PFOS est un tensioactif fluoré qui abaisse davantage la tension superficielle de l'eau que les tensioactifs hydrocarbonés. Bien que l'attention se concentre généralement sur l'isomère à chaîne droite (n-PFOS) qui domine dans les mélanges commerciaux et les échantillons environnementaux, il existe 89 congénères linéaires et ramifiés susceptibles d'avoir des propriétés physiques, chimiques et toxicologiques différentes. Le PFOS jumelé au perfluorooctanoate (PFOA) a également été utilisé pour fabriquer de la mousse à formation de pellicule aqueuse (mousse AFFF), une composante des mousses anti-incendie, et des mousses concentrées anti-alcool.

L'analyse peut être utilisée pour mesurer uniquement les PFOS et les PFOA ou une liste plus large de sulfonates et de carboxylates perfluorés de nature similaire.

Des échantillons d'eau sont analysés par injection directe aqueuse au moyen de la méthode de chromatographie en phase liquide-spectrométrie de masse en tandem (LC-MS/MS). Lorsque de la sensibilité supplémentaire est requise, il est possible d’utiliser la technique d’extraction en phase solide (EPS) pour concentrer l’échantillon avant l'analyse.
Les échantillons solides sont mélangés avec un agent de pairage d’ions avant l'extraction. Les extraits sont évaporés à sec et reconstitués dans le méthanol avant l'analyse par CPL-MS/MS.

4.1.8 Pesticides et Herbicides (P et H)

La plupart des pesticides utilisés sont solubles dans l'eau, ne peuvent être facilement extraits d’une solution aqueuse et sont difficiles à déterminer avec une sensibilité suffisante par GC-MS. Les améliorations apportées au cours des dernières années à la technologie de LC-MS/MS en ont fait une excellente technique pour une analyse couvrant un large spectre de ces composés. Cette technique est beaucoup plus précise que la technique conventionnelle de chromatographie en phase liquide haute performance (HPLC) tout en offrant une sensibilité égale ou supérieure. Puisque les techniques et l'instrumentation sont en constante évolution, il existe uniquement quelques méthodes publiées, et les méthodes de laboratoire pourraient être décrites comme des méthodes « maison ». Certains composés se prêtent à l'analyse par GC-MS, et cette technique peut être très efficace lorsque des sous-ensembles spécifiques de la liste complète, par exemple des stérilisants du sol (atrazine, bromacil, linuron, simazine, tébuthiuron) sont demandés. De même, il existe plusieurs méthodes de chromatographie en phase liquide-spectrométrie de masse (LC-MS) qui utilisent la détection par fluorescence pour des sous-ensembles de la liste.

Les pesticides organochlorés qui ne sont plus utilisés mentionnés à la section 4.1.5 ne se prêtent pas à l'analyse par LC-MS/MS, et requièrent une analyse par GC-ECD ou par HRMS pour atteindre une sensibilité suffisante.

Les pesticides de type carbamate sont souvent mesurés en tant que groupe distinct, tandis que le glyphosate est généralement mesuré seul ou en combinaison avec le 2-amino-3-(5-méthyl-3-oxo-1, 2 - oxazol-4-yl) propanoïque (AMPA). Il n’existe pas de RCQE pour cette substance.

Sauf indication contraire, les méthodes décrites ci-dessous permettent de respecter la RCQE. Les techniques d'analyse s'améliorent continuellement, et des analytes supplémentaires peuvent être ajoutés aux numérisations dans la mesure où elles respectent les objectifs de qualité des données (OQD) de la section 6.

Tous les paramètres possèdent une RCQE pour l’eau. Seul le dinosèbe possède une RCQE pour le sol.

Paramètres

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Détaméthrine</th>
<th>Métrubuzine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>Dicamba</td>
<td>Perméthrine</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Diclofop-méthyl</td>
<td>Picloram</td>
</tr>
<tr>
<td>Captan</td>
<td>Chlorure de didécyldiméthylammonium (CDDA)</td>
<td>Simazine</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Diméthoate</td>
<td>Tébuthiuron</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>Dinosèbe</td>
<td>Trifluraline</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Linuron</td>
<td></td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Méthoprène</td>
<td></td>
</tr>
</tbody>
</table>
Tableau 4.1.8

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l’échantillon
SW-846, Méthode 3550C
Analyse
EPA 538 Ver 1.0 (LC-MS/MS)
EPA Méthode 1699</td>
<td>Préparation de l’échantillon
SW-846, Méthode 3035A
SW-846, Méthode 3510C
SW-846, Méthode 3520C
EPA Méthode 1699
Nettoyage de l’échantillon
EPA Méthode 1699
Analyse
EPA 538 Ver 1.0 (LC-MS/MS)
SW-846, Méthode 8270D
SW 848, Méthode 8151B
EPA Méthode 1699</td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td>E3119
E3121
E3389
E3415
E3437</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td>MA. 403 - PEST 4.1
MA. 416 - PEST 1.0</td>
</tr>
</tbody>
</table>

Principes de la méthode

Des échantillons d’eau peuvent être soumis à l’injection directe dans une solution aqueuse au moyen de la technique de LC-MS/MS opérant en mode de suivi de réactions multiples (SRM). Les échantillons peuvent aussi être concentrés par extraction en phase solide avant l’analyse par LC-MS/MS.

La technique de LC-MS/MS est soit insuffisamment sensible pour atteindre la RCQE la plus faible (dicamba, deltaméthrine, perméthrine, triallate) ou indéterminable pour plusieurs composés (chlorothalonile, trifluraline).

Le chlorothalonile, le triallate et le trifluraline sont mesurés par extraction par GC-MS en utilisant les procédures décrites pour les ABN à la section 4.1.1. Le dicamba est également analysé par GC-MS, mais doit faire l’objet d’une dérivatisation avant l’analyse. La perméthrine requiert une préparation et doit être analysée par HRMS pour atteindre la RCQE. Il est impossible d’atteindre la RCQE pour la deltaméthrine, même par HRMS, bien que cette technique permette d’atteindre le plus bas SDL réalisable.

Les échantillons de sol sont soumis à une lixiviation aqueuse avant l’analyse du lixiviat par LC-MS/MS ou à une extraction par solvant avant la dérivatisation et l’analyse par GC-MS.

4.1.8.1 Carbamates

Les carbamates peuvent être mesurés conjointement avec les P et H par LC-MS/MS.
Paramètres

- Aldicarbe
- Butyl carbamate de 3-Iodo-2-propynyl
- Carbofurane
- Imidaclopride
- Triallate

Tableau 4.1.8.1

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US EPA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AOAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Les échantillons sont soumis à une injection directe en milieu aqueux dans le cadre de l’application de la méthode HPLC suivie d’une dérivatisation post-colonne et d’une détection par fluorescence. Les échantillons peuvent également être analysés par LC-MS/MS comme décrit à la section 4.1.8.

4.1.8.2 **Glyphosate**

Table 4.1.8.2

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4.1.8.1

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Les échantillons sont soumis à une injection directe en milieu aqueux dans le cadre de l’application de la méthode HPLC suivie d’une dérivatisation post-colonne et d’une détection par fluorescence. Les échantillons peuvent également être analysés par LC-MS/MS comme décrit à la section 4.1.8.

4.1.8.2 **Glyphosate**

Table 4.1.8.2

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Les échantillons sont soumis à une injection directe en milieu aqueux dans le cadre de l’application de la méthode HPLC suivie d’une dérivatisation post-colonne et d’une détection par fluorescence. Les échantillons peuvent également être analysés par LC-MS/MS comme décrit à la section 4.1.8.

4.1.8.2 **Glyphosate**

Table 4.1.8.2

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Les échantillons sont soumis à une injection directe en milieu aqueux dans le cadre de l’application de la méthode HPLC suivie d’une dérivatisation post-colonne et d’une détection par fluorescence. Les échantillons peuvent également être analysés par LC-MS/MS comme décrit à la section 4.1.8.

4.1.8.2 **Glyphosate**
Principes de la méthode

Les échantillons sont soumis à une injection directe en milieu aqueux dans le cadre de l’application de la méthode HPLC suivie d'une oxydation post-colonne, de la dérivationisation du produit oxydé et d’une détection par fluorescence. Les échantillons peuvent également être analysés par LC-MS/MS comme décrit à la section 4.1.8. L’AMPA est chimiquement similaire au glyphosate, et est normalement mesuré simultanément.

4.1.8.3 Herbicides de type phén oxy

Les herbicides de type phén oxy peuvent être mesurés conjointement avec les pesticides et les herbicides (section 4.1.8) et les ABN (section 4.1.1).

Paramètres

- Acide dichlorophén oxyacétique, 2,4- (2,4-D)
- Acide méthylchlorophén oxyacétique (acide 4-chloro-2-méthylphén oxyacétique; acide 2-méthyl-4-chlorophén oxyacétique), MCPA

Tableau 4.1.8.3

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sol et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW-846, Méthode 3510C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW-846, Méthode 3520C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW-846, Méthode 3535A</td>
<td>Préparation de l'échantillon</td>
<td></td>
</tr>
<tr>
<td>EPA 538 Ver 1.0</td>
<td>Analyse</td>
<td></td>
</tr>
<tr>
<td>EPA Méthode 1625C</td>
<td>SW-846, EPA 8151B</td>
<td></td>
</tr>
<tr>
<td>SW-846, Méthode 8270D</td>
<td>SW-846, Méthode 8270D</td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td>Méthode 6640B</td>
<td></td>
</tr>
<tr>
<td>AOAC</td>
<td>AOAC 992.32</td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td>E3504</td>
<td>E3119</td>
</tr>
<tr>
<td>Centre d'expertise en analyse environnementale</td>
<td>MA. 403 - P Chip 2.1</td>
<td>MA. 416 - P Chip 1.1</td>
</tr>
</tbody>
</table>

Principes de la méthode

Les échantillons peuvent être analysés par LC-MS/MS comme décrit à la section 4.1.8 ou par acidification et extraction par solvant suivie par GC-MS comme décrit à la section 4.1.1. La dérivationisation avant la GC-MS est facultative et peut être nécessaire pour atteindre les SDL requis.

Les méthodes traditionnelles comprennent l’acidification, l’extraction, la dérivationisation, le nettoyage facultatif, et l’analyse par GC-ECD. Ces méthodes, bien que très sensibles, sont plus sujettes aux interférences que les techniques de GC-MS et de LC-MS/MS.
4.1.9 Hydrocarbures pétroliers (HCP)

Paramètres

- Hydrocarbures pétroliers (HP) (fractions C6 à C10)
 - F1 (C6 à C10)
- Hydrocarbures pétroliers (HP) (fractions C10 à C50)
 - F2 (C10 à C16), F3 (C16 à C34), F4* (C34 à C50), F4G* (gravimétrique)

* Le résultat le plus élevé obtenu pour les F4 et F4G est comparé à l’étalon.

Tableau 4.1.9

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCME</td>
<td>Préparation de l’échantillon et analyse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Méthode de référence du Standard pancanadien relatif aux hydrocarbures pétroliers (SP-HCP) dans le sol – Méthode du 1er volet 2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Méthode de référence du Standard pancanadien relatif aux hydrocarbures pétroliers (SP-HCP) dans le sol – Méthode du 1er volet – Addendum 1, 2002</td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td>E3421</td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

HCP dans les sols et les sédiments

Note : L’analyse des hydrocarbures pétroliers (HCP) doit être conforme à la méthode du CCME (Tableau 4.1.9) composée d’éléments « normatifs » et « fondés sur la performance ». La méthode contient également des éléments obligatoires de performance de la chromatographie. Dans le cas des BTEX et des F1, le préchargement du contenant d’échantillonnage de sol avec du méthanol utilisé comme agent de conservation est un écart accepté par rapport à la méthode du CCME.

La fraction F1 est mesurée en traitant un échantillon de sol ou de sédiment conservé sur le terrain tel que reçu (environ 5 g) (consulter le tableau 3A), puis en procédant à une analyse par purge et piégeage ou de l’espace de tête par GC-FID. L’utilisation d’échantillonneurs hermétiques et la congélation sont d’autres options de manipulation des échantillons qui nécessitent des techniques de préparation modifiées. Voir la section 4.1.1.14 (COV) pour plus de détails à ce sujet.

Les fractions F2, F3, F4 sont mesurées en extrayant un échantillon de sol minimal de 5 g de poids sec avec un solvant 50:50 d’hexane et d’acétone dans un appareil Soxhlet ou l’équivalent (p. ex., extracteur mécanique). Le solvant récupéré de l’échantillon de sol extrait est séparé avec de l’eau pour éliminer ou réduire la teneur en acétone dans l’extrait organique. L’extrait organique est séché avec du sulfate de sodium et traité avec du gel de silice (100 % activé), soit in situ, soit par chromatographie sur colonne pour éliminer la matière polaire (50:50 dichlorométhane/hexane). Les
extraits de solvants récupérés sont analysés dans les 40 jours suivant l’extraction. L’extrait est analysé par GC-FID.

La teneur en eau est mesurée comme cela est expliqué dans la section 3.1.1 (2).

Pour la fraction F1, l’échantillon est analysé par chromatographie en phase gazeuse à l’aide d’une colonne composée à 100 % de polydiméthylsiloxane (DB-1 ou l’équivalent) et d’un détecteur à ionisation de flamme. Les résultats de toutes les surfaces depuis le début du pic nC6 jusqu’au sommet du pic nC10 sont intégrés pour obtenir les résultats de la fraction F1. Les solutions étalons contenant des nC6, nC10 et du toluène sont analysées. Le toluène est utilisé comme solution étalon. La différence entre les facteurs de réponse nC6 et nC10 et le facteur de réponse du toluène ne doit pas dépasser 30 %.

Pour les fractions F2, F3, F4, l’échantillon est analysé par chromatographie en phase gazeuse à l’aide d’une colonne composée à 100 % de polydiméthylsiloxane (DB-1 ou l’équivalent) et d’un détecteur à ionisation de flamme. Il doit être démontré tous les jours que les facteurs de réponse pour les nC10, nC16 et nC34 possèdent un écart-type relatif (ÉTR) ≤ 10 %, et que la différence entre le facteur de réponse du nC50 et le facteur de réponse moyen pour les nC10, nC16 et nC34 ne doit pas dépasser 30 %. Les concentrations en hydrocarbures sont calculées dans les trois intervalles suivants.

1. La fraction F2 (hydrocarbures nC10 à nC16) est analysée en intégrant les résultats de toutes les surfaces depuis le sommet du pic nC10 jusqu’au sommet du pic nC16. Le facteur de réponse moyen pour les hydrocarbures nC10, nC16 et nC34 est utilisé pour étalonnage primaire.

2. La fraction F3 (hydrocarbures nC16 à nC34) est analysée en intégrant les résultats de toutes les surfaces depuis le sommet du pic nC16 jusqu’au sommet du pic nC34. Le facteur de réponse moyen pour les hydrocarbures nC10, nC16 et nC34 est utilisé pour étalonnage primaire.

3. La fraction F4 (hydrocarbures nC34 à nC50) est analysée en intégrant les résultats de toutes les surfaces depuis le sommet du pic nC34 jusqu’au sommet du pic nC50. Le facteur de réponse moyen pour les hydrocarbures nC10, nC16 et nC34 est utilisé pour étalonnage primaire. Le facteur de réponse de la chromatographie en phase gazeuse des hydrocarbures nC50 ne doit pas dépasser 30 % du facteur de réponse moyen des hydrocarbures nC10, nC16 et nC34. Ce résultat équivaut à la fraction F4 à la condition que le tracé du chromatogramme descends à la ligne de base au temps de rétention des hydrocarbures nC50.

Les hydrocarbures de la fraction F4G (analyse gravimétrique) est analysée uniquement si le tracé du chromatogramme révèle la présence d’hydrocarbures supérieurs à nC50 comme c’est le cas lorsque le tracé revient à la ligne de base nC50 ou après et si l’enveloppe d’hydrocarbures totaux est > 500 mg/kg. Un échantillon de sol de 5 g ou plus est traité avec de l’hexane et de l’acétone en proportion 50:50 puis traité avec du gel de silice (F4Ggs). Le solvant est évaporé avant de déterminer le poids du résidu. Les résultats de l’analyse de la fraction F4 (CPG) et de la fraction F4Ggs (gravimétrique) sont notés, mais le résultat le plus élevé est utilisé comme point de comparaison avec l’étalon HPC applicable. Il faut noter que la fraction F4G est une mesure gravimétrique qui inclut > d’hydrocarbures C50 ainsi que des hydrocarbures des fractions F4, F3 et de la majorité de la fraction F2.

Analyse des fractions F2–F4 dans des sols riches en carbone organique

Les sols et les sédiments riches en matières organiques comme la tourbe peuvent dépasser la capacité du gel de silice pour éliminer les hydrocarbures non pétroliers. Une autre aliquote de l’extrait peut être traitée avec un poids plus élevé de silice, si nécessaire. L’analyse par GC-MS peut
également être utilisée pour identifier les hydrocarbures non pétroliers. La méthode de référence suggère également d’effectuer des comparaisons avec les échantillons de référence. Consulter la méthode de référence du Standard pananadien relatif aux hydrocarbures pétroliers (SP-HCP) concernant la méthode du 1er volet pour le sol pour plus de détails.

HCP dans l’eau

Note : Aucune méthode pancanadienne n'a pas été approuvée pour les échantillons d'eau. Cependant, l'analyse des HPC dans l'eau doit être conforme aux exigences d'analyse instrumentale et aux exigences de performance prescrites du Standard pananadien relatif aux hydrocarbures pétroliers (SP-HCP) dans le sol - méthode du 1er volet, 2001, et doit répondre à toutes les exigences de performance prescrites dans la méthode du CCME.

La fraction F1 est mesurée en purgeant un volume d'échantillon d'eau ou en utilisant la méthode de l'espace de tête, puis en procédant à une analyse par GC-FID.

Les fractions F2, F3 et F4 sont mesurées par extraction à l'hexane. Les extraits récupérés peuvent être conservés pendant 40 jours après l'extraction. Le solvant récupéré de l'échantillon extrait est séché avec du sulfate de sodium et peut être traité *in situ* avec du gel de silice ou par chromatographie sur colonne pour éliminer les matières polaires (50:50 dichlorométhane/hexane). L’extrait est ensuite analysé par GC-FID.

Pour la fraction F1, l’échantillon est analysé par chromatographie en phase gazeuse à l’aide d’une colonne composée à 100 % de polydiméthylsiloxane (DB-1 ou l’équivalent) et d’un détecteur à ionisation de flamme. Les résultats de toutes les surfaces depuis le début du pic nC6 jusqu’au sommet du pic nC10 sont intégrés pour obtenir les résultats de la fraction F1. Les solutions étalons contenant des nC6, nC10 et du toluène sont analysées. Le toluène est utilisé comme solution étalon. La différence entre les facteurs de réponse nC6 et nC10 et le facteur de réponse du toluène ne doit pas dépasser 30 %.

Pour les fractions F2, F3, F4, l’échantillon est analysé par chromatographie en phase gazeuse à l’aide d’une colonne composée à 100 % de polydiméthylsiloxane (DB-1 ou l’équivalent) et d’un détecteur à ionisation de flamme, comme cela est indiqué dans les principes de la méthode applicables aux HCP dans les sols et les sédiments.

Certains organismes de réglementation peuvent demander ou exiger des analyses sans traitement au gel de silice. Cela permet d'obtenir des concentrations égales ou supérieures aux valeurs obtenues après le traitement au gel de silice, et inclura les hydrocarbures pétroliers partiellement dégradés (polaires) ainsi que des matières organiques d'origine naturelle. L’information sur les composés individuels peut être obtenue par balayage GC-MS à large spectre.

Calculs

Pour la fraction F1 dans les sols et les sédiments, le résultat est corrigé pour tenir compte de l’humidité du sol extraite dans le méthanol. Le volume total solvant/eau (Vt) est calculé à l’aide de l’équation suivante :

\[
\text{Volume final (méthanol + eau) en mL} = ml \text{ de volume de méthanol} + \frac{\text{% d'humidité}}{100} \times \text{échantillon humide en poids g}
\]

Les résultats d’analyse de HCP n’ont pas à inclure le benzène, le toluène, l’éthylbenzène ou les xylènes (BTEX) ou les hydrocarbures aromatiques polycycliques (HAP). Si les concentrations de
BTEX ou de HAP sont mesurées, les deux résultats corrigés et non corrigées doivent être présentés comme suit :

F1, F1–BTEX
F2, F2–napthalène
F3, F3–HAP*
F4, F4G

*HAP = phénanthrène; benz[a]anthracène; benzo[b]fluoranthène; benzo[k]fluoranthène; benzo[a]pyrène; fluoranthène; dibenz[a]anthracène; indeno[1,2,3-c,d]pyrène; pyrène.

4.1.10 *Biphényles polychlorés (BPC)*

Paramètres

| Aroclor 1242 | Aroclor 1248 | Aroclor 1254 | Aroclor 1260 | Biphényles polychlorés (BPC) totaux |

D’autres Aroclors (1016, 1221, 1232, 1262, 1268) peuvent aussi être déterminés.

Tableau 4.1.10

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l’échantillon</td>
<td>Préparation de l’échantillon</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3540C</td>
<td>SW-846, Méthode 3510C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3541</td>
<td>SW-846, Méthode 3520C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3545A</td>
<td>SW-846, Méthode 3535A</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3546</td>
<td>Nettoyage d’échantillon</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3550</td>
<td>SW-846, Méthode 3610B</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3570</td>
<td>SW-846, Méthode 3620C</td>
</tr>
<tr>
<td></td>
<td>Nettoyage d’échantillon</td>
<td>SW-846, Méthode 3630C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3640A</td>
<td>SW-846, Méthode 3640A</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3660B</td>
<td>SW-846, Méthode 3660B</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3665A</td>
<td>SW-846, Méthode 3665A</td>
</tr>
<tr>
<td></td>
<td>Analyse</td>
<td>Analyse</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 8082A</td>
<td>SW-846, Méthode 8082A</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 8270D</td>
<td>SW-846, Méthode 8270D</td>
</tr>
<tr>
<td></td>
<td>EPA Méthode 1668C</td>
<td>EPA Méthode 1668C</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 6630B</td>
</tr>
<tr>
<td>ASTM</td>
<td></td>
<td>Méthode D5175-91 (2003)</td>
</tr>
<tr>
<td>USGS</td>
<td></td>
<td>O-5129-95</td>
</tr>
</tbody>
</table>

Volume 4: Méthodes D’analyse
Historiquement, les BPC (tout comme les CO et les hydrocarbures aliphatiques chlorés lourds) ont été mesurés par GC-ECD. Le DCE est très sensible aux éléments électronégatifs comme le Cl, mais le DCE est non spécifique et peut être sujet à des interférences. De ce fait les échantillons extraits doivent être minutieusement nettoyés avant l'analyse. Le dosage est réalisé en comparant le tracé chromatographique des mélanges étalons du BPC, appelés Aroclor, à celui de l'échantillon. L'interprétation de mélanges complexes requiert de l'expérience et de la compétence, et la technique ne peut s'appliquer à des échantillons incinérés, puisque l'incinération détruit le patron de l’Aroclor.

Des méthodes de spectrométrie de masse à faible résolution (GC-MS) permettant de déterminer les groupes de congénères (p.ex., le tétrachloro ou l’heptachloro BPC) ont été mises au point. Des méthodes de spectrométrie de masse à haute résolution (HRMS) capables de mesurer l’ensemble des 209 congénères (C_{12}H_{(10-n)}Cl_{n}, où n = 1 à 10) ou le sous-ensemble des congénères les plus toxiques sont également disponibles. Les méthodes par HRMS offrent la plus grande spécificité et sensibilité possible pour les congénères individuels.

Des RCQE provisoires ont été adoptées pour les BPC totaux et l’Aroclor 1254 dans les sédiments. Les critères sont basés sur les données sur la toxicité, et les concentrations ont été déterminées en utilisant la technique du DCE. Les BPC totaux représentant la somme des concentrations d’Aroclor mesurées. Lorsque des techniques de GC-MS ou de HRMS sont employées, les PCB totaux représentent la somme de tous les congénères individuels ou des groupes de congénères. Les valeurs obtenues à l’aide des techniques de SM et de DCE peuvent ne pas être équivalentes.

Il est recommandé de procéder à des analyses des congénères spécifiques de PCB totaux, par opposition à l'analyse des mélanges d’Aroclor, pour les échantillons de sédiments altérés par les conditions météorologiques ou historiquement contaminés. La diagenèse des sédiments et la déchloration des BPC peut modifier le profil Aroclor d'origine, ce qui rend difficile, voire impossible, de cerner les patrons d'Aroclor, et peut causer un niveau élevé d'erreur dans l'estimation de la concentration de BPC sous forme de mélanges Aroclor dans les échantillons de sédiments (Duninker et al. 1991). Ainsi, les mesures de mélanges d'Aroclor (y compris l’Aroclor 1254) peuvent être plus appropriées pour les sédiments dans lesquels il semble y avoir eu une contamination récente.

En résumé, pour la plupart des applications courantes la méthode par GC-ECD est satisfaisante et peut être utilisée pour mesurer les CO et des aliphatiques chlorés plus lourds à partir du même extrait, et elle est la méthode de choix pour mesurer des Aroclors spécifiques. La méthode par HRMS (US EPA Méthode 1668A) offre une plus grande sensibilité et une spécificité accrue pour les congénères individuels et des informations précises au sujet de leur toxicité. Il importe de noter que le coût d'une analyse de HRMS est environ dix fois plus élevé qu'une analyse par DCE.

Principes de la méthode

Procédure par DCE : une aliquote d'échantillon solide est extraite au moyen d'un solvant ou d'un mélange de solvant. Les extraits peuvent être conservés pendant 40 jours. L'extrait
est nettoyé en utilisant une technique approuvée par la méthode de référence. Après le nettoyage, l'extrait est analysé en injectant une aliquote dans un GC-ECD. L'analyse est normalement réalisée en utilisant une seule colonne.

Les échantillons aqueux sont extraits pour être ensuite concentrés, reconstitués, et analysés par GC-ECD. Les solvants d'extraction typiques sont le chlorure de méthylène ou un mélange de chlorure de méthylène et d'hexane.

Il est aussi possible d'utiliser la CPG-MS, à condition que les seuils de déclaration (SDL) du tableau 5 puissent être atteints, et que le protocole de quantification décrit ci-dessous soit utilisé.

Identification et quantification des BPC pour la procédure par DCE

Le protocole de quantification recommandé est le suivant : Quatre Aroclors sont quantifiés, soit 1242, 1248, 1254 et 1260. Chaque Aroclor contient un mélange de congénères individuels de BPC qui forment un patron distinctif reconnaissable dans le chromatogramme. L'identification est réalisée en comparant le chromatogramme de l'échantillon à des chromatogrammes de référence de chaque Aroclor individuel. Le temps de rétention et les intensités relatives d'au moins trois et de préférence cinq pics principaux doivent correspondre au spectre de référence dans des limites spécifiées pour constituer une identification positive. Une concentration d’Aroclor est calculée sur la base de chacun des pics identifiés, et la concentration d’Aroclor moyenne déterminée d’après tous les pics identifiés est calculée. Les limites acceptables pour les temps de rétention sont ± 6 secondes par rapport à l'étalon de l'Aroclor correspondant. Toute pic individuel avec une concentration de > ± 30 % de la moyenne ou n'entrant pas dans la fenêtre de temps de rétention est éliminé et la concentration moyenne recalculée. Au moins trois pics doivent demeurer pour constituer une identification positive.

Si l'échantillon contient un seul Aroclor, il faut comparer la réponse des pics principaux dans l’Aroclor identifié au chromatogramme de l’Aroclor de référence et calculer la concentration de chacun d’entre eux. La moyenne des concentrations du pic principal représente la concentration de l'Aroclor (après prise en compte des facteurs de dilution appropriés).

Lorsque plusieurs Aroclors sont identifiés et quantifiés, les « BPC totaux » représentent la somme des Aroclors identifiés et quantifiés. Si un Aroclor autre que 1242, 1248, 1254 ou 1260 (p. ex. 1016) est identifié dans l’échantillon, un spectre de référence doit être obtenu et l’Aroclor doit être inclus dans la quantification des BPC totaux. Dans les cas où les tracés chromatographiques indiquent la présence de BPC, mais où il est difficile de les attribuer à un Aroclor spécifique, le jugement de l'analyste est utilisé pour choisir la correspondance la plus appropriée. Lorsqu’un mélange ou des conditions atmosphériques extrêmes empêchent l’identification d’un Aroclor individuel, les résultats doivent être rapportés en notant un SDL élevé.

Procédure par HRMS : Des échantillons aqueux (généralement un litre) et solides (généralement 10 grammes) sont enrichis avec des analogues marqués par des isotopes stables provenant de congénères toxiques, puis sont extraits et soumis à un nettoyage en plusieurs étapes. L'extrait bien nettoyé est concentré à 20 µL. Les échantillons sont analysés par HRMS, et la quantification s'effectue par dilution isotopique pour tous les analytes correspondant aux analogues marqués par des isotopes, ou autrement au moyen de la méthode de l'étalon interne.
4.1.11 *Dibenzo-p-dioxines polychlorés/Dibenzo-furanes (PCDD/PCDF)*

Paramètres

<table>
<thead>
<tr>
<th>Groupes de congénères</th>
<th>Isomères substitués 2,3,7,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tétrachlorodibenzo-p-dioxide total (T4CDD)</td>
<td>2,3,7,8-TCDD</td>
</tr>
<tr>
<td>Pentachlorodibenzo-p-dioxide total (P5CDD)</td>
<td>1,2,3,7,8-PCDD</td>
</tr>
<tr>
<td>Hexachlorodibenzo-p-dioxide total (H6CDD)</td>
<td>1,2,3,4,7,8-HCDD</td>
</tr>
<tr>
<td>Tétrachlorodibenzofurane total (T4CDF)</td>
<td>2,3,7,8-TCDF</td>
</tr>
<tr>
<td>Pentachlorodibenzofuran total (P5CDF)</td>
<td>1,2,3,7,8-PCDF</td>
</tr>
<tr>
<td>Hexachlorodibenzofurane total (H6CDF)</td>
<td>1,2,3,4,7,8-HCDF</td>
</tr>
<tr>
<td>Heptachlorodibenzo-p-dioxide total (H7CDD)</td>
<td>1,2,3,4,6,7,8-HCDD</td>
</tr>
<tr>
<td>Octachlorodibenzo-p-dioxide (O8CDD)</td>
<td>OCDD</td>
</tr>
<tr>
<td>Tétrachlorodibenzofurane total (T4CDF)</td>
<td>2,3,7,8-TCDF</td>
</tr>
<tr>
<td>Pentachlorodibenzofuran total (P5CDF)</td>
<td>1,2,3,7,8-PCDF</td>
</tr>
<tr>
<td>Hexachlorodibenzofurane total (H6CDF)</td>
<td>1,2,3,4,7,8-HCDF</td>
</tr>
<tr>
<td>Heptachlorodibenzo-p-dioxide total (H7CDD)</td>
<td>1,2,3,4,6,7,8-HCDD</td>
</tr>
<tr>
<td>Octachlorodibenzo-p-dioxide (O8CDD)</td>
<td>OCDD</td>
</tr>
</tbody>
</table>

Tableau 4.1.11.1

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon</td>
<td>Préparation de l'échantillon</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3545A</td>
<td>Méthode 1613B</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3546</td>
<td>SW-846, Méthode 8290A</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 8290A</td>
<td>SW-846, Méthode 8290A</td>
</tr>
<tr>
<td></td>
<td>Méthode 1613B</td>
<td>Méthode 1613B</td>
</tr>
<tr>
<td>Analyse</td>
<td>SW-846, Méthode 8290A</td>
<td>Analyse</td>
</tr>
<tr>
<td></td>
<td>Méthode 1613B</td>
<td>SW-846, Méthode 8290A</td>
</tr>
<tr>
<td>Environnement et Changement climatique Canada</td>
<td>EPSI/RM/19</td>
<td>EPSI/RM/19</td>
</tr>
<tr>
<td>MECCO</td>
<td>E3418</td>
<td>E3418</td>
</tr>
<tr>
<td>Centre d'expertise en analyse environnementale</td>
<td></td>
<td>MA. 400 - D.F. 1.0</td>
</tr>
</tbody>
</table>

Principes de la méthode

Cette méthode d'analyse est utilisée pour mesurer les concentrations de PCDD et de PCDF dans une variété de matrices en utilisant la dilution isotopique avec HRMS.
Les échantillons solides sont généralement analysés tels que reçus. Tous les échantillons sont enrichis avec des quantités connues de $[^{13}\text{C}_{12}^-]$ marquées par des isotopes PCDD et PCDF avant le prélèvement de l'échantillon, la digestion, ou l'élution. Tous les analytes sont quantifiés à l'aide de la technique de dilution isotopique puis comparés à des étalons marqués. Les échantillons solides sont extraits à l'aide de solvant Soxhlet ou Dean-Stark, par micro-ondes, ou par extraction par liquide sous pression (ELP), suivie d'une procédure de nettoyage chromatographique à étapes multiples pour éliminer toute interférence chimique potentielle.

Les échantillons aqueux sont enrichis avec des quantités connues de $[^{13}\text{C}_{12}^-]$ marquées par des isotopes PCDD et PCDF avant l'extraction par solvant suivie de procédures de chromatographie de nettoyage (généralement en deux étapes) pour éliminer toute interférence chimique potentielle. Les extraits sont stables indéfiniment. Les extraits finaux sont analysés en utilisant la technique de chromatographie en phase gazeuse haute résolution-spectrométrie de masse à haute résolution (HRGC-HRMS).

Calcul des équivalents toxiques (ÉQT)

Il existe 210 dioxines et furanes, dont dix-sept sont considérés hautement toxiques (congénères de substitution des positions 2,3,7,8, Environnement et Changement climatique Canada, Organisation mondiale de la santé), et leur toxicité est normalisée par rapport à la 2,3,7,8 TCDD (la plus toxique). L’ÉQT est déterminé comme indiqué dans le tableau 4.1.11.2 en multipliant la concentration de chaque congénère de substitution des positions 2,3,7,8 par son facteur d'équivalence toxique (FET) pour déterminer son ÉQT. Les FET dans le tableau 4.1.11.2 sont ceux fournis par l’OMS (2005), tels que modifiés de temps à autre. Pour tout congénère de substitution des positions 2,3,7,8 non détecté, la moitié de la limite de détection estimée (LDE) est multipliée par le FET pour établir le TÉQ intermédiaire pour ce congénère. Cela permet de convertir chacun des congénères en équivalent toxique de 2,3,7,8-TCDD. La somme des 17 équivalents toxiques donne l'ÉQT pour l'échantillon normalisé en 2,3,7,8-TCDD. Le résultat dans cet exemple est de 1,64 pg/L.

Tableau 4.1.11.2. Exemple d’ÉQT

<table>
<thead>
<tr>
<th>Composé</th>
<th>N° CAS</th>
<th>Conc. pg/L</th>
<th>LDE pg/L</th>
<th>FET*</th>
<th>ÉQT /Congénère pg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-TCDD</td>
<td>1746-01-6</td>
<td>ND</td>
<td>1,1</td>
<td>1</td>
<td>0,55</td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDD</td>
<td>40321-76-4</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDD</td>
<td>39227-28-6</td>
<td>ND</td>
<td>1,2</td>
<td>0,1</td>
<td>0,06</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDD</td>
<td>57653-85-7</td>
<td>ND</td>
<td>0,89</td>
<td>0,1</td>
<td>0,045</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDD</td>
<td>19408-74-3</td>
<td>ND</td>
<td>1</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDD</td>
<td>35822-46-9</td>
<td>ND</td>
<td>1,1</td>
<td>0,01</td>
<td>0,0055</td>
</tr>
<tr>
<td>OCDD</td>
<td>3268-87-9</td>
<td>3,4</td>
<td>0,003</td>
<td>0,0102</td>
<td></td>
</tr>
</tbody>
</table>

1 Environnement et Changement climatique Canada et le MECCO requièrent l’utilisation de valeurs intermédiaires consolidées pour le calcul de l’ÉQT. D’autres organismes peuvent demander d’utiliser une autre méthode. Dans le cas des composés non détectés au-dessus de la LDE, l’ÉQR intermédiaire utilise ½ de la valeur de la LDE, la limite supérieure de l’ÉQT utilise la valeur de la LDE, et la limite inférieure de l’ÉTQ utilise la valeur zéro.
<table>
<thead>
<tr>
<th>Composé</th>
<th>N° CAS</th>
<th>Conc. pg/L</th>
<th>LDE pg/L</th>
<th>FET*</th>
<th>ÉQT /Congénère pg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-TCDF</td>
<td>51207-31-9</td>
<td>ND</td>
<td>1</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDF</td>
<td>57117-41-6</td>
<td>ND</td>
<td>1</td>
<td>0,03</td>
<td>0,015</td>
</tr>
<tr>
<td>2,3,4,7,8-PeCDF</td>
<td>57117-31-4</td>
<td>ND</td>
<td>1</td>
<td>0,3</td>
<td>0,15</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDF</td>
<td>70648-26-9</td>
<td>ND</td>
<td>0,82</td>
<td>0,1</td>
<td>0,041</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDF</td>
<td>57117-44-9</td>
<td>ND</td>
<td>1,1</td>
<td>0,1</td>
<td>0,055</td>
</tr>
<tr>
<td>2,3,4,6,7,8-HxCDF</td>
<td>60851-34-5</td>
<td>ND</td>
<td>1,1</td>
<td>0,1</td>
<td>0,055</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDF</td>
<td>72918-21-9</td>
<td>ND</td>
<td>1,2</td>
<td>0,1</td>
<td>0,06</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDF</td>
<td>67562-39-4</td>
<td>ND</td>
<td>0,95</td>
<td>0,01</td>
<td>0,0048</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-HpCDF</td>
<td>5567-89-7</td>
<td>ND</td>
<td>1</td>
<td>0,01</td>
<td>0,005</td>
</tr>
<tr>
<td>OCDF</td>
<td>39001-02-0</td>
<td>1,8</td>
<td>0,0003</td>
<td>0</td>
<td>0,00054</td>
</tr>
<tr>
<td>Total ÉQT 2,3,7,8-TCDD (0,5 DL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,64 pg/L</td>
</tr>
</tbody>
</table>

ÉQT = équivalents toxiques = sommes d’ÉQT individuels /LDE congénère = limite de détection estimée

FET = facteur d’équivalence toxique

* Les RCQE sont basées sur d’anciennes et différentes TEF. Les poissons et les oiseaux possèdent également des TEF différentes.

Production de rapports

La source et l’année des valeurs de TEF utilisées pour calculer l’ÉQT doivent être mentionnées (p.ex., Organisation mondiale de la santé 2005).

4.1.12 *Hydrocarbures aromatiques polycycliques (HAP)*

Les hydrocarbures aromatiques polycycliques peuvent être mesurés conjointement avec les ABN (section 4.1.1).

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Acénaphtèné</th>
<th>Benzo[k]fluoranthène</th>
<th>Méthylnaphthalènes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acénaphtylène</td>
<td>Benzo[g,h,i]pérylène</td>
<td>Naphthalène</td>
</tr>
<tr>
<td>Acridine</td>
<td>Chrysène</td>
<td>Phénaanthrène</td>
</tr>
<tr>
<td>Anthracène</td>
<td>Dibenz[a]anthracène</td>
<td>Pyrène</td>
</tr>
<tr>
<td>Benz[a]anthracène</td>
<td>Fluoranthène</td>
<td>Quinolène</td>
</tr>
<tr>
<td>Benzo[a]pyrène</td>
<td>Fluorène</td>
<td></td>
</tr>
<tr>
<td>Benzo[b+j+k]fluoranthène**</td>
<td>Indéno[1,2,3-c,d]pyrène</td>
<td></td>
</tr>
</tbody>
</table>

** Lorsque les isomères b et k ne peuvent pas être déclarés séparément, les déclarer comme la somme des isomères b, j et k et la comparer à la RCQE. Le MECCO possèdent des normes distinctes pour les isomères b et k.

Tableau 4.1.12

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Solts et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon</td>
<td>Préparation de l'échantillon</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3540C</td>
<td>SW-846, Méthode 3510C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3541</td>
<td>SW-846, Méthode 3520C</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3546</td>
<td>SW-846, Méthode 3535</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3550C</td>
<td>SW-846, Méthode 3611B</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3570</td>
<td>SW-846, Méthode 8270D</td>
</tr>
<tr>
<td></td>
<td>Nettoyage de l'échantillon</td>
<td>Analyse</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3610B</td>
<td>SW-846, Méthode 8270D</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3630C</td>
<td>SW-846, Méthode 8272</td>
</tr>
<tr>
<td></td>
<td>Analyse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 8270D</td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td>Méthode 6440C</td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td>E3425</td>
<td>E3480</td>
</tr>
<tr>
<td>Centre d'expertise en analyse</td>
<td>MA. 403 - HPA 4.1</td>
<td></td>
</tr>
<tr>
<td>environnementale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Des échantillons de sol enrichis marqués au deutérium sont extraits à l'aide d’un solvant ou d’un mélange de solvants. Le nettoyage de l'extrait est facultatif.

Des échantillons aqueux, enrichis de substituts, sont extraits avec un solvant. Lorsque seuls les HAP sont mesurés, l'extraction peut se faire à pH neutre ou basique. Lorsque la mesure vise la quinoléine et/ou l'acridine, l'HAP contenant de l'azote, il est recommandé de procéder à l'extraction à pH basique pour optimiser le rendement de l'extraction. Puisque ces analytes sont possiblement les plus difficiles de la suite HAP à extraire, l'utilisation d'analogues deutérées, comme le d₉-acridine est recommandée et nécessaire si l'extraction se fait à pH neutre. L'analyse par la méthode de dilution isotopique peut également être utilisée pour la quinoléine et l'acridine afin d'améliorer la récupération.

Les extraits peuvent être conservés pendant 40 jours. L'extrait de l'échantillon est concentré puis analysé par GC-MS, en mode SIM ou non.

La GC-MS fournit une sensibilité et une spécificité suffisantes pour atteindre les RCQE. Lorsque des SDL inférieurs sont nécessaires, ou que des interférences sont susceptibles de se produire, la technique par HRMS peut être utilisée.

Voir la section 4.1.1 (ABN) pour plus de détails à ce sujet.

Calculs

Les protocoles du CCME exigent le calcul des équivalents toxiques potentiels (ETP) du benzo[a]pyrène (B[a]P) et de l’indice de risque cumulatif de cancer (IRCC) des échantillons de sol à l’aide des concentrations des HAP potentiellement cancérogènes.

Équivalents toxiques potentiels du benzo[a]pyrène

L'ETP du B[a]P TPE pour un échantillon de sol est calculé en multipliant la concentration de chaque HAP dans l’échantillon par le facteur d’équivalence de toxicité (FET) du B[a]P, mentionné

<table>
<thead>
<tr>
<th>HAP</th>
<th>Facteur d’équivalence de toxicité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benz[a]anthracène</td>
<td>0,1</td>
</tr>
<tr>
<td>Benzo[g,h,i]pérylène</td>
<td>0,01</td>
</tr>
<tr>
<td>Indeno[1,2,3-c,d]pyrène</td>
<td>0,1</td>
</tr>
<tr>
<td>Benzo[a]pyrène</td>
<td>1</td>
</tr>
<tr>
<td>Chrysène</td>
<td>0,01</td>
</tr>
<tr>
<td>Benzo[b+j+k]fluoranthène</td>
<td>0,1</td>
</tr>
<tr>
<td>Dibenz[a,h]anthracène</td>
<td>1</td>
</tr>
</tbody>
</table>

IRCC :

IRCC = \frac{\text{Benz[a]anthracène}}{0,33 \text{ mg/kg}} + \frac{\text{Benzo[b,j,k]fluoranthène}}{0,16 \text{ mg/kg}} + \frac{\text{Benzo[g,h,i]pérylène}}{6,8 \text{ mg/kg}} + \frac{\text{Benzo[a]pyrène}}{0,37 \text{ mg/kg}} + \frac{\text{Chrysène}}{2,1 \text{ mg/kg}} + \frac{\text{Dibenz[a,h]anthracène}}{0,23 \text{ mg/kg}} + \frac{\text{Indeno[1,2,3-c,d]pyrène}}{2,7 \text{ mg/kg}}

Aux fins de ce calcul, pour les substances non détectées, utilisez la \(\frac{1}{2} \) de la valeur non-détectée. Pour plus de détails et d’autres exemples de calcul, veuillez consulter le feuillet d’information sur les hydrocarbures aromatiques polycycliques des Recommandations canadiennes pour la qualité des sols : environnement et santé humaine, CCME 2010.

4.1.13 Trihalométhanes (THM)

Les trihalométhanes peuvent être mesurés conjointement avec les COV (section 4.1.14).

Paramètres (Synonymes)

- Bromodichlorométhane (Dichlorobromométhane)
- Dibromochlorométhane (Chlorodibromométhane)
- Tribromométhane (Bromoforme)
- Trichlorométhane (Chloroforme)

Calcul

Total des THM = somme des composés individuels en mg/L.
4.1.14 Composé organiques volatils I (COV)

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Composé</th>
<th>Synonymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acétone</td>
<td>Monobromométhane** (bromométhane, méthyl bromure)</td>
</tr>
<tr>
<td>Benzène***</td>
<td>Monochlorobenzène</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,2-</td>
<td>Monochlorométhane (chlorure de méthyle)</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,3-</td>
<td>Styrale</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,4-</td>
<td>Tétrachloroéthane, 1,1,1,2-</td>
</tr>
<tr>
<td>Dichlorodiffuorométhane</td>
<td>Tétrachloroéthane, 1,1,2,2-</td>
</tr>
<tr>
<td>Dichloroéthane, 1,1-</td>
<td>Tétrachloroéthane, 1,1,2,2- (PCE, tétrachloroéthylène)</td>
</tr>
<tr>
<td>Dichloroéthane, 1,2-</td>
<td>Tétrachlorométhane (tétrachlorure de carbone)</td>
</tr>
<tr>
<td>Dichloroéthane, 1,1-</td>
<td>Thiophène</td>
</tr>
<tr>
<td>Dichloroéthane, 1,2-cis-</td>
<td>Toluène***</td>
</tr>
<tr>
<td>Dichloroéthane, 1,2-trans-</td>
<td>Trichlorobenzène, 1,2,3-††</td>
</tr>
<tr>
<td>Dichlorométhane (chlorure de méthylène)</td>
<td>Trichlorobenzène, 1,2,4-††</td>
</tr>
<tr>
<td>Dichloropropane, 1,2-</td>
<td>Trichlorobenzène, 1,3,5-††</td>
</tr>
<tr>
<td>Dichloropropène, 1,3- (cis- and trans-)*</td>
<td>Trichloroéthane, 1,1,1-</td>
</tr>
<tr>
<td>Éthylbenzène***</td>
<td>Tétrachloroéthane, 1,1,2-</td>
</tr>
<tr>
<td>Dibromure d’éthylène (dibromométhane, 1,2-)</td>
<td>Trichloroéthane, 1,1,2- (TCE, tétrachloroéthylène)</td>
</tr>
<tr>
<td>Hexane, n-</td>
<td>Trichlorofluorométhane</td>
</tr>
<tr>
<td>Méthyléthylcétonne (MEK)</td>
<td>Chlorure de vinyle</td>
</tr>
<tr>
<td>Méthylisobutylcétonne (MIBK)</td>
<td>Xylénes***</td>
</tr>
<tr>
<td>Méthyl tert-butyl éther (MTBE)</td>
<td></td>
</tr>
</tbody>
</table>

* La somme du dichloropropène cis- et trans- est comparée à l’étalon.

** Les échantillons conservés dans le méthanol peuvent élever le seuil de détection du bromométhane; un échantillon distinct conservé dans le bisulfate ou scellé hermétiquement peut être requis au moment de l’échantillonnage si le bromométhane est une substance préoccupante.

*** Peut être mesuré conjointement avec les BTEX (section 4.1.15).

† Le MECCO réglemente le cis-1,2-dichloréthane et le trans-1,2-dichloroéthène séparément. Les RCQE comparent la somme des composés aliphatiques chlorés, dont le 1,2-dichloroéthène, à l’étalon.

†† Peut être mesuré conjointement avec les ABN (section 4.1.1).
Tableau 4.1.14

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon
SW-846, Méthode 3570
SW-846, Méthode 5035A
SW-847, Méthode 8261A
Introduction de l'échantillon
SW-846, Méthode 5021A
SW-846, Méthode 5035A
Analyse
SW-846, Méthode 8260C
SW-847, Méthode 8261A</td>
<td>Préparation de l'échantillon
Introduction de l'échantillon
SW-846, Méthode 5000
SW-846, Méthode 5030C
Analyse
SW-846, Méthode 8260C
SW-846, Méthode 8261A
SW-846, Méthode 8265
EPA Méthode 624</td>
</tr>
<tr>
<td>CCME</td>
<td>Standard pancanadien relatif aux hydrocarbures pétroliers (SP-HCP) dans le sol - méthode du 1er volet, 2001</td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td>Méthode 6200B</td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td>E3490</td>
<td>E3132
E3144</td>
</tr>
<tr>
<td>Centre d'expertise en analyse environnementale</td>
<td>MA. 400 - COV 1.1
MA. 403 - COV 1.1</td>
<td></td>
</tr>
</tbody>
</table>

COV dans les sols et les sédiments

Principes de la méthode

Les échantillons de sol et de sédiments tel que reçus (environ 5 g) conservés sur le terrain sont traités en laboratoire pour les COV dans les 14 jours de la date d'échantillonnage. Lorsqu’il est nécessaire d’atteindre des SDL en-dessous de ce qui peut être réalisé à partir d'un extrait au méthanol, des échantillons en duplicata conservés avec du bisulfate de sodium aqueux peuvent être analysés tels que reçus.

Les extraits au méthanol sont stables pendant 40 jours. Les extraits au bisulfate sont stables pendant 14 jours. Si les extraits au méthanol sont retenus après analyse, la séparation de l'extrait de la matrice du sol est recommandée afin d'assurer des résultats cohérents au fil du temps.

La teneur en eau est déterminée de la manière décrite dans la section 3.1.1 (2).

Les extraits contenant des composés dépassant la plage d'étalonnage de l'instrument sont dilués avec de l’eau exempte de composé volatile pour être ensuite analysée. Les échantillons peuvent être présélectionnés au moyen de la méthode d'analyse d'espace de tête CPG-MS ou d'autres instruments appropriés pour mesurer les dilutions appropriées.
Les composés volatils présents dans la solution de méthanol ou de bisulfate sont introduits selon la méthode de purge et de piégeage ou de l'espace de tête dans le chromatographe en phase gazeuse, où ils sont séparés par une colonne capillaire pour être détectés par un spectromètre de masse fonctionnant soit en mode d’analyse complète ou de SIM. Il importe de souligner l'appariement de la matrice avec les échantillons et les étalons (agents de conservation, quantité de méthanol, etc.) est essentielle pour prévenir les biais d’analyse des COV avec la technologie de l’espace de tête. L’ajout de sel aux échantillons de l'espace de tête améliore la sensibilité.

L'identification des analytes cibles est réalisée en comparant les spectres de masse de l'échantillon avec les spectres de masse des étalons d’analyse. La quantification est réalisée en comparant la réaction d'un ion parent (dosage) par rapport à un étalon interne et un facteur de réponse généré à partir d'une courbe d'étalonnage.

Calculs et rapport

Lors de la présentation de données fondées sur une extraction au méthanol, les concentrations doivent être corrigées pour tenir compte de l’humidité extraite dans le méthanol.

COV dans l'eau

Principes de la méthode

Les échantillons aqueux sont analysés tels que reçus au moyen de la méthode de purge et de piégeage ou de l'espace de tête effectuée par GC-MS.

4.1.15 *Composés organiques volatils II : Benzène, Éthylbenzène, Toluène, Xylènes (BTEX)*

Ces composés peuvent être mesurés conjointement avec les COV (section 4.1.14).

Paramètres (Synonymes)

<table>
<thead>
<tr>
<th>Benzène</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éthylbenzène</td>
</tr>
<tr>
<td>Toluène (méthylbenzène)</td>
</tr>
<tr>
<td>Xylènes, total (o-xylène; m- et p-xylène)</td>
</tr>
</tbody>
</table>

Note : Les composés BTEX (benzène, toluène, éthylbenzène, xylènes) mentionnés ci-dessus sont un sous-ensemble de composés organiques volatils (COV) qui font souvent l’objet d’une analyse discrète, et sont par conséquent incus dans un groupe distinct. Les principes de la méthode applicable aux BTEX sont identiques à ceux des COV décrits dans la section 4.1.14 et le Tableau 4.1.14.

4.1.16 *Paramètres d'analyse des matières organiques individuelles*

4.1.16.1 *Diisopropanolamine*

Paramètres (Synonymes)

| Diisopropanolamine (DIPA) |
Tableau 4.1.16.1

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
</table>

Principes de la méthode

Les échantillons d’eau peuvent être analysés tels que reçus par HPLC ou par injection aqueuse directe dans un chromatographe ionique utilisant la chromatographie en phase inverse avec détection ampérométrique. Les sols sont soumis à une lixiviation aqueuse acide avant l'analyse du lixiviat. Par ailleurs, lorsque des SDL plus faibles sont requis, les échantillons peuvent être transformés en dérivés et analysés par HPLC avec détection par fluorescence.

4.1.16.2 Fraction de carbone organique (FCO)

Paramètres

- Fraction de carbone organique dans les sols et les sédiments

Tableau 4.1.16.2

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>Méthode D2974-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Méthode E1915-07</td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td>E3142, E3012</td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

La fraction de carbone organique (FCO) dans le sol est une mesure du rapport entre le carbone organique présent dans le sol par rapport à la masse de l'échantillon (g(carbone)/g(sol)). Le carbone organique total (COT) est calculé comme la différence entre les mesures de carbone total (CT) et du carbone inorganique total (CIT). La mesure du carbone total dans le sol et les sédiments nécessite la destruction des minéraux carbonatés (calcite et dolomie principalement) ainsi que du carbone organique.

De l’oxygène est purgé à travers le système, et la combustion des échantillons entraîne l'oxydation du carbone en dioxyde de carbone (CO₂). Le CO₂ est recueilli, passé à travers deux filtres pour éliminer l'humidité et la poussière, puis mesuré à l’aide d’un détecteur infrarouge (CT en mg/g de carbone). Le carbone inorganique (carbonate de carbone) est déterminé en mesurant le CO₂ dégagé par la réaction du carbonate avec une solution d'acide fort balayée par de l'azote purifié à travers un épurateur d'iode de potassium dans le compartiment cathodique d'un coulomètre. Le CO₂ dégagé est quantitativement absorbé par la solution cathodique et converti en un acide fort amenant la couleur de l'indicateur à s'estomper. À l’aide d’un apport électrique, la solution est ramenée vers le point de départ (CIT en mg/g de carbone).

Il est également possible d’utiliser une méthode de réaction chimique en milieu humide. Dans le cadre d’un tel procédé, le sol, après élimination du carbonate à l’aide d’acide, est traité avec un
excès de dichromate acide qui réagit avec le carbone organique dans le but de l’oxyder sous forme de CO₂. Le bichromate résiduel est titré avec du sulfate d’ammonium ferreux, et le COT est calculé en établissant la différence.

4.1.16.3 Méthylmercury

Paramètres (Synonymes)

Méthylmercury (Monométhylmercury, CH₃Hg⁺, MeHg⁺)

<table>
<thead>
<tr>
<th>Tableau 4.1.16.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de référence de la méthode</td>
</tr>
<tr>
<td>US EPA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Sols

Eaux

Des échantillons aqueux sont acidifiés avec de l’acide chlorhydrique formant du chlorure organomercurique (RHgCl) qui est séparé par distillation (EPA Méthode 1630). Le distillat est éthylé pour former du RHgEt. Les complexes volatils de RHgEt sont purgés à l’aide d’un filtre au charbon actif, puis désorbés thermiquement sur un chromatographe en phase gazeuse avec détection par pyrolyse/par spectrophotométrie à fluorescence atomique de vapeur froide (CVAFS) selon la Méthode 1630 de l’US EPA.

Tissus

Les échantillons sont extraits avec de l’hydroxyde de potassium/méthanol, et l’extrait est distillé puis analysé à même les extraits de sol. En variante, les échantillons peuvent être digérés à l’acide nitrique à 60°C avant l’analyse à même les extraits de sol.
Rapport

La RCQE relative au méthylmercure dans les tissus est présentée sous forme de poids humide. Il n'existe aucun critère pour le sol ou les sédiments, mais lorsque cette information est demandée elle est normalement exprimée en unités de µg/g de poids sec.

4.1.16.4 Nonylphénol et ses dérivés éthoxylés

Paramètres (Synonymes)

Nonylphénol et ses dérivés éthoxylés

Tableau 4.1.16.4

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td></td>
<td>ASTM D7485-09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D7065</td>
</tr>
</tbody>
</table>

Principes de la méthode

Des échantillons d'eau sont acidifiés sur le terrain puis extraits par EPS. La cartouche d’EPS est éluée avec de l'acétonitrile. L’acétonitrile est concentré puis analysés par LC-MS/MS en mode SRM. Les échantillons d'eau peuvent également être extraits par solvant, l'extrait est par la suite concentré et analysé par GC-MS en mode SIM. La dilution isotopique peut être utilisée pour améliorer la sensibilité de la méthode.

Les sols sont soumis à une extraction de la base aqueuse. L’extrait est analysé comme un échantillon d’eau. Il est possible de procéder à une dérivatisation et un nettoyage pour améliorer la sensibilité de la méthode.

L'analyse de tous les composés et ou groupes de composés inclus dans le tableau de facteur d'équivalence toxique (FET) ci-dessous est un tâche difficile, voire impossible. De manière minimale, il est nécessaire de procéder à l’analyse du nonylphénol (NP), du nonylphénol éthoxylé 1 (NP1EO) et du nonylphénol éthoxylé 2 (NP2EO). L’analyse des NP, des éthoxylates de nonylphénol (NPnEO) (1 ≤ n ≤ 8) et de l’octylphénol (OP) est souhaitable. La RCQE est basée sur le total des NP et des NPEO, par conséquent l'analyse doit inclure les isomères linéaires et ramifiés. Ces composés sont les plus toxiques en mélange de NP et de NPEO et, en raison de leur plus grande résistance à la biodégradation, ils sont susceptibles d'être présents en concentrations très élevées.

Dans les cas où tous les éthoxylates ne sont pas mesurés dans un échantillon, une certaine prudence est de mise lors de la comparaison des résultats et de la valeur guide. Par exemple, si seulement trois substances chimiques ont été mesurées et que la concentration de l'équivalence toxique totale (ETT) est très proche de la valeur guide, il y a alors une bonne chance que la valeur guide soit effectivement dépassée si tous les éthoxylates avaient été pris en considération (Environnement Canada, Kelly Potter, 2004, correspondance personnelle).

Calculs

La RCQE de 1 µg/L est fondée sur les équivalents toxiques

\[
\text{Total EQT} = \sum (C_i \times \text{FET}_i)
\]
Où : $Ci =$ la concentration du composé i en µg/L

$FET_i =$ Facteur d’équivalence toxique pour le composé i (sans unité)

<table>
<thead>
<tr>
<th>Les facteurs d’équivalence toxique (FET) pour le NP, les NPE, les NPEC, l’OP, les OPE, et les OPEC (Servos et al. 2000; Environnement Canada 2002).</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET chimique (par rapport au NP)</td>
</tr>
<tr>
<td>NP</td>
</tr>
<tr>
<td>NPNEO $(1 \leq n \leq 8)$</td>
</tr>
<tr>
<td>NPNEO $(n \geq 9)$</td>
</tr>
<tr>
<td>NP1EC</td>
</tr>
<tr>
<td>NP2EC</td>
</tr>
<tr>
<td>OP</td>
</tr>
<tr>
<td>OPN EO $(1 \leq n \leq 8)$</td>
</tr>
<tr>
<td>OPN EO $(n \geq 9)$</td>
</tr>
<tr>
<td>OP1EC</td>
</tr>
<tr>
<td>OP2EC</td>
</tr>
</tbody>
</table>

NP = Nonylphénol
NPEC = Nonylphénol éthyl carboxylate
NPEO = Nonylphénol éthoxylé
OP = Octylphénol
OPEC = Octylphénol éthyl carboxylate
OPEO = Octylphénol éthoxylé

4.1.16.5 Sulfolane

Paramètre (Synonymes)

Sulfolane (Bondelane)

Tableau 4.1.16.5

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
</table>

Principes de la méthode

Des échantillons d'eau sont analysés par injection aqueuse directe GC-FID. Les sols sont soumis à une lixiviation aqueuse. Le lixiviat est analysé comme un échantillon d'eau. Par ailleurs, lorsqu'une plus grande sensibilité et une plus grande spécificité sont nécessaires, les échantillons peuvent être
extraits, pour être ensuite concentrés et analysés par GC-MS. La dilution isotopique peut être utilisée pour améliorer encore plus la sensibilité de la méthode.

4.2 Groupe des paramètres inorganiques

4.2.1 Métaux

* Bore extractible à l’aide d’un acide fort

Tableau 4.2.1

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon</td>
<td>Préparation de l'échantillon</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3050B (avec HCl)</td>
<td>SW-846, Méthode 3005A</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 3051A</td>
<td>SW-846, Méthode 3010A</td>
</tr>
<tr>
<td></td>
<td>Méthode 200.2, Rév 2.8</td>
<td>SW-846, Méthode 3015A</td>
</tr>
<tr>
<td></td>
<td>Analyse de l'échantillon</td>
<td>SW-846, Méthode 3020A</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 6010C</td>
<td>Méthode 200.2 Rév 2.8</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 6020A</td>
<td>Méthode 200.8 Rév 5.4</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 7000B</td>
<td>Analyse de l’échantillon</td>
</tr>
<tr>
<td></td>
<td>SW-846, Méthode 7010</td>
<td>SW-846, Méthode 7010</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 200.5, Rév 4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 200.7, Rév 4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 200.8, Rév 5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 200.9, Rév 5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 200.15, Rév 1.2</td>
</tr>
</tbody>
</table>

Tableau 4.2.1

<table>
<thead>
<tr>
<th>Aluminium (Al)</th>
<th>Cobalt (Co)</th>
<th>Sélénium (Se)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimoine (Sb)</td>
<td>Cuivre (Cu)</td>
<td>Argent (Ag)</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>Fer (Fe)</td>
<td>Sodium (Na)</td>
</tr>
<tr>
<td>Baryum (Ba)</td>
<td>Plomb (Pb)</td>
<td>Thallium (Tl)</td>
</tr>
<tr>
<td>Béryllium (Be)</td>
<td>Lithium (Li)</td>
<td>Étain (Sn)</td>
</tr>
<tr>
<td>Bore (B)*</td>
<td>Magnésium (Mg)</td>
<td>Uranium (U)</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>Manganèse (Mn)</td>
<td>Vanadium (V)</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>Molybdène (Mo)</td>
<td>Zinc (Zn)</td>
</tr>
<tr>
<td>Chrome (Cr)</td>
<td>Nickel (Ni)</td>
<td></td>
</tr>
</tbody>
</table>
Source de référence de la méthode | **Sols et sédiments** | **Eau**
--- | --- | ---
MECCO | E3075, E3470 | E3094, E3474, E3497
Ministère de l’Environnement de la Colombie-Britannique, British Columbia Environmental Laboratory Manual | Préparation de l’échantillon Strong Acid Leachable Metals (SALM) on Soil | MA. 200 - Mét. 1.2
Centre d’expertise en analyse environnementale | |

Principes de la méthode

Préparation de l’échantillon

Les techniques de préparation décrites dans les paragraphes qui suivent ne sont pas conçues pour donner la véritable teneur totale en métaux dans les sols ou les sédiments, mais plutôt la partie facilement disponible dans l'environnement (lixiviable à l’acide fort). Les éléments liés dans des structures de silicates ne sont normalement pas dissous par ces procédures, car ils ne sont généralement pas mobiles dans l'environnement. Lorsque des totaux réels sont requis, des techniques de préparation plus agressives comme la digestion ou la fusion acide fluorhydrique sont nécessaires. Les techniques de fluorescence X permettent également d’obtenir des données totales sur les métaux.

Il existe plusieurs différentes techniques de lixiviation à l’acide fort à l’aide de divers mélanges d’acides et généralement d’un bloc chauffant ou d’un appareil de digestion à micro-ondes. Il importe de souligner que les techniques de digestion à micro-ondes peuvent donner des valeurs plus élevées que la digestion à l’aide d’un bloc chauffant pour certains éléments.

Pour les sols, un échantillon préalablement séché, désagrégé, tamisé (<2 mm) est soumis à une digestion à l’aide d’une solution d’acide nitrique et chlorhydrique chauffée. Le digestat est séparé du résidu de sol et porté au volume souhaité avec de l’eau désionisée. Veuillez noter que le MECCO exige un broyage et un tamisage à 355 µm (car le broyage additionnel réduit la variabilité des résultats lorsque de petits échantillons sont utilisés pour l’analyse).

Les échantillons d’eau devant être analysés pour détecter les métaux « dissous » doivent être préalablement filtrés sur le terrain (0,45 m) et conservés sur le terrain à pH < 2. Dans les cas où il est impossible de procéder à la filtration sur le terrain, les échantillons non conservés et non filtrés peuvent être filtrés et conservés au laboratoire, mais cet écart doit être indiqué sur le certificat d'analyse avec une mise en garde que les valeurs peuvent ne pas refléter la concentration au moment de l'échantillonnage. Veuillez noter que la filtration au laboratoire pour les métaux dissous n'est pas autorisée dans certaines provinces ou certains territoires. Pour plus de renseignements, veuillez consulter le chapitre 3.1.3. Les échantillons filtrés et conservés devant être analysés pour détecter les métaux dissous peuvent être analysés tels que reçus, sans autre traitement préalable.

Les échantillons qui nécessitent une analyse des métaux totaux (lixiviable à l’acide fort ou total recouvvrable) doivent être soumis à une digestion acide avant l’analyse sauf dans les cas où la turbidité est < 1 unité de turbidité néphélémétrique (UTN).

L’analyse est effectuée par spectroscopie d’émission avec plasma induit par haute fréquence (ICP-OES), par spectrométrie de masse avec plasma à couplage inductif (ICP-MS), par spectrométrie d’absorption atomique (SAA), par spectroscopie d’émission atomique (SEA) ou par spectroscopie par fluorescence atomique (SFA).

Les étalons d’analyse doivent correspondre à la matrice de l’échantillon.

Calculs

Même s’il n’y a pas de RCQE pour la dureté, plusieurs RCQE, par exemple celles sur le cadmium et le nickel, sont basées sur la dureté. La dureté est déterminée par le calcul suivant :

\[
\text{Dureté, mg équivalent CaCO}_3/L = 2,497 \times [\text{Ca, mg/L}] + 4,118 \times [\text{Mg, mg/L}] \quad (\text{APHA 2340B})
\]

où les concentrations de calcium et de magnésium sont déterminées en tant que « métaux dissous », c’est-à-dire sur une aliquote filtrée par un filtre de 0,45 µm.

4.2.2 Paramètres d’analyse des matières inorganiques individuelles

4.2.2.1 Ammoniac (total)

Paramètres

<table>
<thead>
<tr>
<th>Ammoniac</th>
</tr>
</thead>
</table>

Tableau 4.2.2.1

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td>Préparation de l’échantillon AQ2 EPA-103A Analyse d’échantillon AQ2 EPA-103A</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 4500 N Méthode 4500 NH3</td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td>E3364</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td>MA. 300 - N 2.0</td>
</tr>
</tbody>
</table>

Principes de la méthode

L’ammoniac est mesuré par colorimétrie à l’aide de la réaction Berthelot (bleu d’indophénol). Dans la première étape de la réaction, l’échantillon d’acide conservé est ajusté à un pH cible de 6,5 à 7,0; l’ammoniac est ensuite soumis à une réaction de chloration avec de l’hypochlorite pour former de la monochloramine. Dans la deuxième étape, la monochloramine est mise à réagir avec un phénate dans des conditions alcalines (environ pH 10) en présence de nitroprussiate afin de former du chlorimine benzoquinone. En troisième étape, le chlorimine benzoquinone réagit avec
du phénate pour former le complexe de bleu d’indophénol. L’intensité de la coloration est proportionnelle à la quantité d'ammoniac présente, et est mesurée par colorimètre à 660 nm. L’analyse est habituellement effectuée à l’aide d’un analyseur automatique à flux continu, par injection de flux ou par analyse discrète.

Bien que la chimie à l’aide de phénate soit le plus fréquemment utilisée, d'autres techniques sont disponibles comme la méthode de la fluorescence avec de l’orthophthalaldéhyde et la méthode au salicylate où l'ammoniac réagit avec les ions salicylate et hypochlorite en présence d'ions ferricyanure pour former l'analogue d'acide salicylique de bleu d'indophénol. Les méthodes d’électrode sélective d'ions (ESI) et de chromatographie ionique (CI) peuvent également être utilisées, à condition qu’elles respectent les exigences de SDL.

4.2.2.2 Ammoniac (non ionisé)

Paramètres

Tableau 4.2.2.2

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Voir ammoniac (Total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 3.2.2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 4500 NH4</td>
</tr>
<tr>
<td>CCME</td>
<td></td>
<td>CCME Ammoniac 2010</td>
</tr>
</tbody>
</table>

Principes de la méthode

L’ammoniac non ionisé est calculée à partir d’échantillons de température et de pH (mesures de terrain) et de la concentration en ammoniac total à l’aide du tableau ci-dessous.

La fraction d’ammoniac non ionisé en solution aqueuse à différentes valeurs de pH et températures est calculée à partir des données dans Emerson, et al (1975).

Pour calculer la quantité d'ammoniac non-ionisé, l'azote ammoniacal doit être multiplié par le facteur approprié sélectionné à partir de ce graphique à l’aide du pH et de la température de l'échantillon d'eau.
Température

<table>
<thead>
<tr>
<th>pH (°C)</th>
<th>68</th>
<th>64,4</th>
<th>60,8</th>
<th>57,2</th>
<th>53,6</th>
<th>50</th>
<th>46,4</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0,0013</td>
<td>0,0016</td>
<td>0,0018</td>
<td>0,0022</td>
<td>0,0025</td>
<td>0,0029</td>
<td>0,0034</td>
<td>0,0039</td>
</tr>
<tr>
<td>7,2</td>
<td>0,0021</td>
<td>0,0025</td>
<td>0,0029</td>
<td>0,0033</td>
<td>0,0037</td>
<td>0,0040</td>
<td>0,0046</td>
<td>0,0052</td>
</tr>
<tr>
<td>7,4</td>
<td>0,0034</td>
<td>0,0040</td>
<td>0,0046</td>
<td>0,0053</td>
<td>0,0060</td>
<td>0,0067</td>
<td>0,0075</td>
<td>0,0085</td>
</tr>
<tr>
<td>7,6</td>
<td>0,0053</td>
<td>0,0063</td>
<td>0,0073</td>
<td>0,0086</td>
<td>0,0100</td>
<td>0,0116</td>
<td>0,0134</td>
<td>0,0155</td>
</tr>
<tr>
<td>7,8</td>
<td>0,0084</td>
<td>0,0099</td>
<td>0,0116</td>
<td>0,0135</td>
<td>0,0157</td>
<td>0,0182</td>
<td>0,0211</td>
<td>0,0244</td>
</tr>
<tr>
<td>8</td>
<td>0,0133</td>
<td>0,0156</td>
<td>0,0182</td>
<td>0,0212</td>
<td>0,0247</td>
<td>0,0286</td>
<td>0,0330</td>
<td>0,0381</td>
</tr>
<tr>
<td>8,2</td>
<td>0,0210</td>
<td>0,0245</td>
<td>0,0286</td>
<td>0,0332</td>
<td>0,0385</td>
<td>0,0445</td>
<td>0,0514</td>
<td>0,0590</td>
</tr>
<tr>
<td>8,4</td>
<td>0,0328</td>
<td>0,0383</td>
<td>0,0445</td>
<td>0,0517</td>
<td>0,0597</td>
<td>0,0688</td>
<td>0,0790</td>
<td>0,0904</td>
</tr>
<tr>
<td>8,6</td>
<td>0,0510</td>
<td>0,0593</td>
<td>0,0688</td>
<td>0,0795</td>
<td>0,0914</td>
<td>0,1048</td>
<td>0,1197</td>
<td>0,1361</td>
</tr>
<tr>
<td>8,8</td>
<td>0,0785</td>
<td>0,0909</td>
<td>0,1048</td>
<td>0,1204</td>
<td>0,1376</td>
<td>0,1666</td>
<td>0,1773</td>
<td>0,1998</td>
</tr>
<tr>
<td>9</td>
<td>0,1190</td>
<td>0,1368</td>
<td>0,1565</td>
<td>0,1782</td>
<td>0,2018</td>
<td>0,2273</td>
<td>0,2546</td>
<td>0,2836</td>
</tr>
<tr>
<td>9,2</td>
<td>0,1763</td>
<td>0,2008</td>
<td>0,2273</td>
<td>0,2558</td>
<td>0,2861</td>
<td>0,3180</td>
<td>0,3512</td>
<td>0,3855</td>
</tr>
<tr>
<td>9,4</td>
<td>0,2533</td>
<td>0,2847</td>
<td>0,3180</td>
<td>0,3526</td>
<td>0,3884</td>
<td>0,4249</td>
<td>0,4618</td>
<td>0,4985</td>
</tr>
<tr>
<td>9,6</td>
<td>0,3496</td>
<td>0,3868</td>
<td>0,4249</td>
<td>0,4633</td>
<td>0,5016</td>
<td>0,5394</td>
<td>0,5762</td>
<td>0,6117</td>
</tr>
<tr>
<td>9,8</td>
<td>0,4600</td>
<td>0,5000</td>
<td>0,5394</td>
<td>0,5778</td>
<td>0,6147</td>
<td>0,6499</td>
<td>0,6831</td>
<td>0,7140</td>
</tr>
<tr>
<td>10</td>
<td>0,5745</td>
<td>0,6131</td>
<td>0,6498</td>
<td>0,6844</td>
<td>0,7166</td>
<td>0,7463</td>
<td>0,7735</td>
<td>0,7983</td>
</tr>
<tr>
<td>10,2</td>
<td>0,6815</td>
<td>0,7152</td>
<td>0,7463</td>
<td>0,7746</td>
<td>0,8003</td>
<td>0,8234</td>
<td>0,8441</td>
<td>0,8625</td>
</tr>
</tbody>
</table>

\[
F = \frac{1}{10^{(pK_a + \text{pH}) + 1}}
\]

où

\[
pK_a = \text{pH} + \log \frac{[\text{NH}_4^+]}{[\text{NH}_3\cdot\text{HOH}]}
\]

\[F = \text{fraction molaire de l’ammoniac non ionisé}\]

4.2.2.3 Bore – soluble à l’eau chaude

Paramètres

Bore, soluble à l’eau chaude (BSEC)

Tableau 4.2.2.3

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMOE</td>
<td>Analyse E3470</td>
<td></td>
</tr>
</tbody>
</table>

Volume 4: Méthodes D’analyse 60
Bore dans les sols ou les sédiments

Principes de la méthode

Une portion minimum de 5 g d'un échantillon solide séché, désagrégé et tamisé (< 2 mm) est extraite avec 10 ml de chlorure de calcium 0,01 (utilisé pour assurer un filtrat clair) à travers un filtre Whatman® n° 42 ou l'équivalent. Le MECCO quant à lui exige une filtration à travers un filtre de 0,45 µm. L'échantillon est chauffé et doit bouillir pendant cinq minutes avant d’être refroidi puis filtré. L'échantillon est ensuite analysé en utilisant l'une des techniques de spectrométrie énumérées au tableau 4.2.1 (métaux) ou au tableau 4.2.2.3.

Note 1: 5 g est la taille minimale d’un échantillon représentatif. Des poids plus élevés peuvent être utilisés, mais la proportion 2:1 (v/p) de chlorure de calcium aqueux par rapport au sol doit être maintenue.

Note 2: Pour certains types de sols comme la tourbe et l’argile gonflante, un ratio sol-eau plus élevé peut être nécessaire. Dans de tels cas, utilisez la proportion la plus pratique. Cette remarque s'applique aussi à d'autres paramètres d'extraits aqueux.

Rapport

Tous les résultats sont rapportés en µg/g poids sec.

4.2.2.4 Chlorure (extractible à l’eau)

Paramètres

<table>
<thead>
<tr>
<th>Chlorure (Cl⁻)</th>
</tr>
</thead>
</table>

Tableau 4.2.2.4

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td>Préparation de l'échantillon Analyse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW-846, Méthode 6500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW-846, Méthode 9056A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW-846, Méthode 9250</td>
</tr>
</tbody>
</table>
Principes de la méthode

Sols et sédiments

Une portion minimum de 5 g d'un échantillon solide séché, désagrégé et tamisé (< 2 mm) est extraite avec 10 mL d'eau désionisée en l'agitant pendant au moins 30 minutes avant de la filtrer et de l'analyser par chromatographie ionique ou par colorimétrie. Des proportions plus élevées peuvent être requises pour certains types d'échantillons (mousses, argiles fines) afin d'obtenir suffisamment de liquide pour l'analyse.

Note : 5 g est la taille minimale d’un échantillon représentatif. Des poids plus élevés peuvent être utilisés, mais la proportion 2:1 (v/p) de chlorure de calcium aqueux par rapport au sol doit être maintenue.

Le protocole ci-dessus est celui de l’Ontario. D’autres provinces comme l'Alberta et la Colombie-Britannique exigent un extrait de pâte saturée. Pour procéder à l'extraction de pâte saturée, on ajoute de l'eau désionisée à l'échantillon, et le mélange est par la suite agité à la spatule jusqu'à ce qu'une condition de saturation soit atteinte. Les conditions de saturation sont les suivantes :

- L’échantillon de pâte est luisant, car il reflète la lumière.
- L’échantillon s’écoule légèrement lorsque le contenant est incliné, et glisse librement et proprement de la spatule.
- Une tranchée taillée à la surface du sol se referme rapidement en cognant le contenant.
- Il ne doit y avoir aucune couche d’eau libre au-dessus de l’échantillon.

Laisser l’échantillon reposer pendant au moins 4 heures et vérifier pour s’assurer que le critère de saturation est respecté. Si de l’eau libre s’est accumulée à la surface, ajouter une quantité pondérée de sol et mélanger de nouveau. Si le sol a durci ou s’il ne brille pas, ajouter de l’eau et bien mélanger.

Le sol contenant de l'argile ou du sable à haute teneur en matière organique peut ne pas répondre à l’ensemble de ces quatre critères de saturation.
Note : Les données d'extraits à proportions fixes et d'extraits de pâte saturée ne sont pas nécessairement comparables. Vérifiez les exigences des organismes de réglementation locaux.

Dans le cadre de la procédure colorimétrique, les ions chlorure se combinent avec le thiocyanate mercurique pour former un sel non dissocié, le chlorure de mercure, et libérer des ions de thiocyanate qui ensuite se complexent à des ions ferriques pour produire un complexe coloré. L'absorbance de la solution colorée mesurée à la longueur d'onde appropriée est proportionnelle à la concentration originale d'ions chlorure dans l'échantillon. L'analyse est habituellement effectuée à l'aide d'un analyseur automatique à flux continu, par injection de flux ou par analyse discrète.

En variante, il est possible d’utiliser la technique de chromatographie ionique. La chromatographie ionique est une forme de chromatographie en phase liquide qui utilise des résines échangeuses d'ions pour séparer les ions atomiques ou moléculaires selon leur interaction avec la résine.

Rapport

Tous les résultats sont rapportés en µg/g poids sec.

Eau

Les échantillons peuvent être analysés directement, ou filtrée au laboratoire avant l'analyse par colorimétrie ou chromatographie ionique (tableau 4.2.2.4).

4.2.2.5 Chrome trivalent (Cr(III))

Paramètres

<table>
<thead>
<tr>
<th>Chrome trivalent (Cr(III))</th>
</tr>
</thead>
</table>

Principes de la méthode

Le chrome trivalent est calculé à partir de la différence entre le chrome total (tel que déterminé à la section 4.2.1) et le chrome hexavalent (tel que déterminé à la section 4.2.2.6). Reportez-vous à la section 6.3.2 pour plus de détails sur les limites de détection des paramètres soustraits.

Rapport

Tous les résultats sont rapportés en µg/g poids sec.

4.2.2.6 Chrome hexavalent (Cr(VI))

Paramètres (Synonymes)

| Chrome hexavalent (chrome VI, Cr (VI), Cr⁺⁶) |
Tableau 4.2.2.6

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon SW-846, Méthode 3060A Analyse SW-846, Méthode 7196A SW-846, Méthode 7199</td>
<td>Préparation de l'échantillon N/D Analyse SW-846, Méthode 7196A SW-846, Méthode 7199 Méthode 218.6, Rév. 3.31 Méthode 218.7 Méthode 1636</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 3500-Cr</td>
</tr>
<tr>
<td>ASTM</td>
<td></td>
<td>Méthode D5257-11</td>
</tr>
<tr>
<td>USGS</td>
<td>I-1232-85</td>
<td>I-1232-85</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td>MA. 200 - Spéc. Mét. 1.0</td>
</tr>
</tbody>
</table>

Principes de la méthode

Dans le cas des échantillons de sol et de sédiments, un échantillon d’au moins 2,5 g tel que reçu est soumis à une digestion alcaline avec agitation continue avant de procéder à l'analyse. L'extrait doit être analysé dans les sept jours de l'extraction.

Pour la détermination du chrome hexavalent dissous, les échantillons aqueux sont filtrés et conservés sur le terrain avec une solution tampon de sulfate d'ammonium selon la méthode 218.6 (rév. 3.3, 1994) de l'US EPA ou avec de l’hydroxyde de sodium selon la méthode 3500-Cr Chrome (2009) de Methods Standard à un pH de 9,3 à 9,7 pour obtenir un temps de rétention de 28 jours2.

Note : Selon la méthode 218.7 de l’US EPA, le Cr(VI) est stable à condition que le pH soit > 8 et qu’il n’y ait pas de chlore libre. Le chlore libre peut oxyder les espèces de Cr(III) solubles (le cas échéant) pour les transformer en Cr(VI). Utilisez plutôt la solution tampon de sulfate d’ammonium en cas de présence de chlore libre.

La procédure d'analyse la plus courante est la colorimétrie manuelle ou automatique. Le digestat alcalin (ou échantillon aqueux de base conservé) est acidifié et traité avec du 1,5-diphénylcarbazide (DPC) qui réagit avec le chrome VI pour donner une coloration rouge-violet, dont

l'absorption est mesurée par spectrophotométrie à une longueur d'onde de 540 nm. Les échantillons colorés produisent une interférence positive qui peut être atténuée par la correction du fond.

En variante, la chromatographie ionique peut être utilisée pour l'analyse au moyen d'une dérivatisation post-colonne avec du DPC et une mesure à 540 nm. Cette procédure offre une sensibilité accrue et réduit les interférences par rapport à la colorimétrie.

4.2.2.7 Couleur (vraie)

Paramètres

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon N/D Analyse Méthode 110.1</td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td>Méthode 2120B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Méthode 2120C</td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td>E3219</td>
<td></td>
</tr>
<tr>
<td>Hach Company</td>
<td>Méthode 8025</td>
<td></td>
</tr>
<tr>
<td>Centre d'expertise en analyse environnementale</td>
<td>MA. 103 - Col. 2.0</td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

La couleur (couleur vraie) est déterminée après filtration de l'échantillon à travers une membrane filtrante de 0,45 µm en mesurant le filtrat par spectrophotométrie à 450-465 nm en utilisant une courbe d'étalonnage préparée avec des étalons contenant du chloroplatinate.

En variante, la couleur peut être déterminée par comparaison visuelle par rapport à une série d'étalons contenant du chloroplatinate.

La couleur apparente est déterminée sans filtration de l'échantillon. La couleur dépend du pH. Sauf indication contraire, les résultats rapportés au sujet de la couleur se rapportent au pH de l'échantillon reçu, avec un écart de pH ± 1

Rapport

Les résultats sont présentés sous forme d’unités de couleur (UC).

4.2.2.8 Conductivité

Tableau 4.2.2.8

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l'échantillon</td>
<td></td>
</tr>
</tbody>
</table>
Principes de la méthode

Une partie de taille minimale de 5 g préalablement séchée et désagréée, tamisée (< 2 mm), est extraite par agitation avec 10 ml d’eau désionisée (20 ml pour les sols organiques) pendant au moins 30 minutes. L’échantillon est ensuite analysé à l’aide d’un conductimètre.

Note : 5 g est la taille minimale d’un échantillon représentatif. Des poids plus élevés peuvent être utilisés, mais la proportion 2:1 (v/p) d’eau par rapport au sol doit être maintenue. Certains types de sol peuvent exiger une proportion d’eau plus élevée pour qu’il y ait suffisamment de liquide pour la mesure. Ce fait doit être noté sur le certificat ou dans le rapport d’analyse.

Certaines provinces ou certains territoires exigent l’analyse d’un extrait de pâte saturée. Voir la section 4.2.2.4 sur le chlorure pour plus de détails à ce sujet.

La conductivité varie selon le rapport sol/eau. Consulter les exigences réglementaires locales pour connaître la méthode appropriée.

Les échantillons d’eau sont analysés tels que reçus.

La conductance, G, est définie comme l’inverse de la résistance, R :

\[G = \frac{1}{R} \]

Où R s’exprime en ohm et G en ohm\(^{-1}\) (parfois mho). La conductance d’une solution est mesurée entre deux électrodes fixes dans l’espace et chimiquement inertes. Pour éviter la polarisation aux surfaces des électrodes, on impose un courant électrique alternatif pour mesurer la conductance. La conductance d’une solution, G, est directement proportionnelle à l’aire des électrodes, A (cm\(^2\)), et inversement proportionnelle à la distance entre les électrodes, L (cm). La constante de proportionnalité, K :

\[G = k \frac{A}{L} \]

est appelée « conductivité » (préférable à « conductance spécifique »). Il s’agit d’une propriété caractéristique de la solution entre les électrodes. K s’exprime en 1/ohm-cm ou mho par centimètre. La conductivité est couramment rapportée en micromhos par centimètre (µmho/cm). Dans le Système international d’unités (SI), l’ohm est le siemens (S) et la conductivité est rapportée en millisiemens par mètre (mS/m); 1 mS/m = 10 mmhos/cm et 1 mS/cm = 1 mmho/cm.

Rapport

La conductivité telle que mesurée dans l’extrait est rapportée. Les unités peuvent être soit des µS/cm ou des dS/m.
4.2.2.9 Cyanure (libre)

Paramètres

Cyanure (CN\(^-\))

Tableau 4.2.2.9

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Analyse</td>
<td></td>
</tr>
<tr>
<td>SW-846, Méthode 9012B</td>
<td>SW-846, Méthode 9012B</td>
<td></td>
</tr>
<tr>
<td>SW-846, Méthode 9014</td>
<td>SW-846, Méthode 9014</td>
<td></td>
</tr>
<tr>
<td>SW-846, Méthode 9016</td>
<td>SW-846, Méthode 9016</td>
<td></td>
</tr>
<tr>
<td>Méthode OIA-1677</td>
<td>Méthode OIA-1677</td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méthode 4500-CN-E</td>
<td>Méthode 4500-CN-E</td>
<td></td>
</tr>
<tr>
<td>Méthode 4500-CN-I</td>
<td>Méthode 4500-CN-I</td>
<td></td>
</tr>
<tr>
<td>Méthode 4500-CN-N</td>
<td>Méthode 4500-CN-N</td>
<td></td>
</tr>
<tr>
<td>Méthode 4500-CN-O</td>
<td>Méthode 4500-CN-O</td>
<td></td>
</tr>
<tr>
<td>MECCO</td>
<td>Préparation/analyse de l'échantillon</td>
<td>Analyse</td>
</tr>
<tr>
<td>E3015</td>
<td></td>
<td>E3015</td>
</tr>
<tr>
<td>ASTM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4282</td>
<td></td>
<td>D4282</td>
</tr>
<tr>
<td>D7237</td>
<td></td>
<td>D7237</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td>MA. 300 - CN 1.2</td>
<td></td>
</tr>
</tbody>
</table>

La RCQE pour la qualité du sol indique que « le terme cyanure libre fait référence à l’ensemble comprenant le HCN moléculaire et l’anion cyanure CN ». D’autre part, le « cyanure libre » fait référence aux cyanures simples et peu dissociables qui forment de l’acide cyanhydrique à pH 4 (cyanure dissociable par des acides faibles). Cette définition est employée par le MECCO.

Le cyanure libre est la forme de cyanure biodisponible très toxique pour les organismes. L’acide cyanhydrique est un gaz toxique incolore avec une odeur d’amandes amères qui se divise dans l’eau en HCN ou CN-(selon le pH). Avec un pKa de 9,36, le cyanure libre existe uniquement sous forme de HCN à un pH de 7 ou moins.

Le cyanure dissociable par des acides faibles (DAF) fait référence dans la pratique aux espèces de cyanure qui subissent une dissociation libérant du cyanure libre en cas de reflux dans des conditions faiblement acides (pH 4,5 à 6). Le CN- DAF comprend le cyanure libre et des cyanures complexes de métaux légers, et représente donc une estimation prudente de toxicité. Ainsi, si l’analyse du cyanure dissociable par des acides faibles donne comme résultat une valeur ≤ que la RCQE on peut supposer que le cyanure libre est également ≤ que la RCQE.

Le CN- DAF doit être ≥ que le cyanure libre. Ainsi, si l’analyse du cyanure dissociable par des acides faibles donne comme résultat une valeur ≤ que la RCQE on peut supposer que le cyanure libre est également ≤ que la RCQE.
Principes de la méthode

Préparation de l’échantillon de sol et de sédiments
Un échantillon tel que reçu d’au moins 10 g est extrait avec 100 ml d’hydroxyde de sodium aqueux 0,05 N à un pH > 12. L’échantillon est agité pendant au moins six heures pour être ensuite centrifugé et décanté. L’hydroxyde de sodium est utilisé pour maintenir un pH approprié. Cela est vérifié par une vérification du pH après l’extraction. Si le pH est < 10, l’extraction devrait être répétée avec une base plus solide. Des échantillons de poids plus élevés peuvent être utilisés, mais la proportion 10:1 (v/p) d’hydroxyde de sodium aqueux par rapport à la quantité de sol doit être maintenue. Cette méthode d’extraction est tirée de la Méthode E3015 du MECCO (note : ASTM D7572 et la méthode 9013A de l’US EPA décrivent des procédures similaires, mais la méthode du MECCO est recommandée par souci de cohérence).

Préparation de l’échantillon d’eau
Les échantillons d’eau sont analysés tels que reçus. Les particules pouvant interférer avec l’analyse doivent être retirées par centrifugation ou filtration en laboratoire si nécessaire.

Analyse du cyanure DAF
Une partie de l’échantillon aqueux ou du lixiviat est introduite directement dans l’analyseur automatique à partir d’un échantillonneur automatique. Le cyanure est séparé de l’eau ou des lixiviat à pH faiblement acide de 4,5 à 6,0 par distillation manuelle ou automatique (sans oxydation UV) ou par l’intermédiaire d’une membrane perméable aux gaz. L’analyse est soit colorimétrique ou ampérométrique. Des précautions doivent être prises dans les conditions d’analyse pour éviter les interférences pouvant être causées par le thiocyanate. La distillation hors circuit avant l’analyse est une option acceptable.
La méthode colorimétrique automatisée utilise de l’acide barbiturique ou diméthylbarbiturique jumelé à de l’acide isonicotinique ou de la pyridine jumelée à de l’acide barbiturique comme réactif de coloration.

Analyse du cyanure libre
Le HCN + CN⁻ sont extraits à l’aide d’une cellule de microdiffusion. L’échantillon d’eau, d’eaux usées ou l’extrait est introduit dans la chambre extérieure de la cellule de microdiffusion, et est limité à un pH de 6 à l’aide d’un tampon avant d’être placé dans l’obscurité pendant 6 heures de diffusion. Le cyanure libre se diffuse tandis que le gaz HCN est absorbé sous forme de CN⁻ dans la solution d’hydroxyde de sodium située dans le compartiment central de la cellule de microdiffusion. Le HCN recueilli est ensuite analysé comme indiqué ci-dessus.

4.2.2.10 Sursaturation de gaz dissous

Paramètres

| Sursaturation de gaz dissous |
Tableau 4.2.2.10

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 2810B</td>
</tr>
</tbody>
</table>

Principes de la méthode

Cette mesure s’effectue sur le terrain. La méthode emploie un instrument muni d’un tube perméable aux gaz de longueur variable relié à un dispositif de mesure de pression. Des tubes en caoutchouc de diméthyl-silicone sont couramment utilisés, car ils sont très perméables aux gaz dissous, y compris la vapeur d’eau. À l’état d’équilibre, la pression manométrique à l’intérieur de la tubulure est égale à la différence de pression de gaz (ΔP) entre la pression totale du gaz dissous et la pression barométrique ambiante. Lorsque l’eau est en équilibre avec l’atmosphère, ΔP est égale à zéro. Si ΔP est supérieur à zéro, l’eau est sursaturée. Inversement, si ΔP est négative, l’eau est sous-saturée.

Rapport

La pression totale de gaz est exprimée en unités de mm Hg.

4.2.2.11 Oxygène dissous

Paramètres

Oxygène dissous (OD)

Tableau 4.2.2.11

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 4500-O G</td>
</tr>
</tbody>
</table>

Principes de la méthode

Cette mesure est effectuée sur le terrain. Des électrodes à membranes sensibles à l’oxygène de type polarographique ou galvanique sont constituées de deux électrodes métalliques en contact avec l’électrolyte de support séparé de la solution d’essai par une membrane sélective. La différence fondamentale entre les systèmes galvaniques et polarographiques est que dans le premier cas la réaction d’électrode est spontanée (semblable à celle d’une pile à combustible), tandis que dans le second cas une source externe de tension appliquée est nécessaire pour polariser l’électrode indicatrice. Des membranes de polyéthylène et de fluorocarbone sont couramment utilisées, car elles sont perméables à l’oxygène moléculaire et sont relativement robustes. Des électrodes à membrane sont disponibles dans le commerce en diverses variétés. Dans tous ces instruments, la « diffusion de courant » est linéairement proportionnelle à la concentration en oxygène moléculaire. La méthode classique de titrage Winkler (Standard Methods 4500-O) n’est pas facilement applicable sur le terrain.
4.2.2.12 Fluorure

Paramètres

Fluorure

Tableau 4.2.2.12

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td>Préparation de l’échantillon Méthode 300.0, Rév 2.1 Analyse Méthode 300.0, Rév 2.1 Méthode 300.1, Rév 1.0</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 4110 B Méthode 4500-F</td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td>E3172</td>
</tr>
<tr>
<td>Methods of Soil Analysis Part 3 – Chemical Methods, 1996, Sparks, Editor, 850 – 852.</td>
<td>“Sodium Hydroxide Fusion Method for Total Fluorine”</td>
<td></td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td>MA. 300 - F 1.2</td>
</tr>
</tbody>
</table>

Principes de la méthode

La RCQE pour le fluorure dans le sol est fondée sur le fluorure total. Afin de mesurer le fluorure total, l’échantillon doit être soumis à la fusion avec de l’hydroxyde de sodium avant la dissolution et l’analyse.

Dans le cas du fluorure soluble dans les sols, une quantité minimale de 5 g de l’échantillon solide préalablement séché, désagrégé et tamisé (< 2 mm) est extraite avec 10 ml d’eau désionisée en agitant pendant un minimum de 30 minutes, pour être ensuite filtrée avant d’être analysée.

Note : 5 g est la taille minimale d’un échantillon représentatif. Des poids plus élevés peuvent être utilisés, mais la proportion 2:1 (v/p) d’eau par rapport au sol doit être maintenue.

Les échantillons d’eau sont analysés tels que reçus ou filtrés si nécessaire.

L’analyse peut se faire par électrode à ion spécifique ou par chromatographie ionique avec détection de conductivité. Lorsqu’une électrode à ion spécifique est utilisée, un agent complexant comme un tampon TISAB est ajouté au filtrat avant l’analyse pour maintenir une force ionique constante et décomplexer tous complexes de fluorure d’aluminium.

Rapport

Les données relatives au sol sont présentées sous forme de µg/g poids sec. Les données relatives à l’eau sont présentées en unités de mg/L.
4.2.2.13 Mercure

Paramètres

- Mercure (Hg)

Tableau 4.2.2.13

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
</table>
| **US EPA** | Préparation de l’échantillon
Méthode 200.2 Rév 2.8
SW-846, Méthode 7471B
SW-846, Méthode 3050B
SW-846, Méthode 3051A
Analyse
SW-846, Méthode 7471B
SW-846, Méthode 7474 | Préparation de l’échantillon
Méthode 200.2 Rév 2.8
Méthode 200.8, Rév 5.4
Analyse
SW-846, Méthode 7470A
Méthode 245.1, Rév 3.0
Méthode 245.2
Méthode 245.7, Rév 2.0
Méthode 200.8, Rév 5.4
Méthode 1631E | |
| **Standard Methods** | | Méthode 3112 B
ASTM | Méthode D3223-02
USGS | I-16463-86
I-3462-85 | |
| MECCO | E3059 | E3060 |
| Ministère de l’Environnement de la Colombie-Britannique, British Columbia Environmental Laboratory Manual | Préparation de l’échantillon
Strong Acid Leachable Metals (SALM) on Soil | |
| Centre d’expertise en analyse environnementale | | MA. 200 - Mét. 1.2 |

Principes de la méthode

Des échantillons de sol préalablement séchés, désagrégés, tamisés (< 2 mm) ou des échantillons aqueux sont digérés dans une solution d’acide mixte forte et chauffée pour convertir toutes les formes de mercure en mercure divalent. Les agents oxydants excédentaires sont éliminés par l’ajout d’hydroxylamine. Le mercure divalent est ensuite réduit en mercure élémentaire, retiré de la solution par barbotage, et analysé en utilisant l’une des méthodes suivantes : spectrophotométrie d’absorption atomique à vapeur froide (CVAAS) manuelle ou automatique, ou spectrophotométrie de fluorescence atomique à vapeur froide (CVAFS). La méthode par CVAFS, en particulier lorsqu’elle est utilisée en conjonction avec un piège de sable doré, fournit une sensibilité supérieure à la méthode par CVAAS.

La technique d’ICP-MS peut également être utilisée pour mesurer le mercure (méthode US EPA 200.8, SW-846 6020A) à condition que les exigences relatives au SDL et à l’OQD soient respectées. Des mesures supplémentaires peuvent être nécessaires pour maintenir le mercure en solution et éviter l’étalonnage dans le système d’introduction d’échantillon (SW 846, méthode 6020A).
4.2.2.14 *Nitrate + Nitrite, Nitrate, Nitrite*

Paramètres

Nitrate + Nitrite

Tableau 4.2.2.14

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td>Préparation de l’échantillon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 300.0 Rév 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 300.0 Rév 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 300.1 Rév 1.0</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 4110 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 4500 NO2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 4500 NO3</td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td>E3364</td>
</tr>
<tr>
<td>Centre d’expertise en analyse</td>
<td></td>
<td>MA. 300 - Ions 1.3</td>
</tr>
<tr>
<td>environnementale</td>
<td></td>
<td>MA. 300 - NO3 2.0</td>
</tr>
</tbody>
</table>

Principes de la méthode

Le nitrate combiné au nitrite peut être déterminé par colorimétrie ou chromatographie ionique. Les échantillons sont analysés tels que reçu ou après filtration, au besoin, pour éliminer les particules.

La méthode colorimétrique automatisée comprend un collecteur à double entrée utilisé pour mesurer le nitrite de manière individuelle et le nitrite et le nitrate combinés. Dans l’un des canaux, le nitrate est réduit en nitrite dans une colonne réductrice contenant un amalgame de cadmium-cuivre. Le nitrite généré par la réduction ainsi que celui déjà présent dans l’échantillon est ensuite mesuré. Le nitrite (qui était initialement présent en plus du nitrate réduit) est mesuré par diazotation avec de la sulfanilamide et par couplage avec du N-(1-naphtyl)-éthylènediamine pour former un colorant azoïque mesuré par colorimétrie à 520 nm, ce qui donne une valeur de nitrate + nitrite.

Dans le deuxième canal, le nitrite seul est mesuré en utilisant la même chimie sans l’étape de réduction au cadmium, ce qui donne une valeur de nitrite seulement.

Le nitrate est mesuré par soustraction du résultat de nitrite de la valeur nitrate + nitrite. Reportez-vous à section 6.3.2 concernant les limites de détection des paramètres soustraits.

La méthode de chromatographie ionique mesure les quantités individuelles de nitrate et de nitrite. Les méthodes de conductivité ou de détection UV peuvent être utilisées. Le nitrate + nitrite est la somme des résultats individuels.

Calculs et rapports

La RCQE pour le nitrate est exprimée en unités de µg/L en tant que NO₃.

La RCQE pour le nitrate + nitrite est exprimée en unités de µg/L en tant que N.

La RCQE pour le nitrite est exprimée en unités de µg/L en tant que N.
Pour le nitrate, pour convertir des unités µg/L de NO₃ en µg/L de N, multiplier par 14/62.
Pour le nitrite, pour convertir des unités µg/L de N en µg/L de NO₂, multiplier par 44/14.

4.2.2.15 Azote (total)

Paramètres

Azote (total)

<table>
<thead>
<tr>
<th>Tableau 4.2.2.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de référence de la méthode</td>
</tr>
<tr>
<td>Standard Methods</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
</tr>
</tbody>
</table>

Principes de la méthode

L’oxydation alcaline effectuée entre 100 °C et 110 °C convertit l’azote organique et inorganique en nitrate. L’azote total est mesuré en analysant le nitrate dans le digestat au moyen des techniques d’analyse décrites dans la section 4.2.2.14. Il est également possible de procéder à une digestion automatisée au moyen de rayons UV et de persulfate.

Des techniques de combustion automatisées de détection des oxydes d’azote dégagés peuvent aussi être utilisées.

En variante, l’azote total Kjeldahl (ATK), le nitrate et le nitrate (tous exprimés en N) peuvent être mesurés séparément et additionnés pour fournir une valeur d’azote total. Toutefois, puisque toutes les formes d’azote organique ne sont pas déterminées par ATK, la valeur totale de N mesurée de cette façon peut être biaisée à la baisse par rapport aux procédures d’oxydation alcaline ou de combustion. Toutefois, le biais n’est pas significatif pour la plupart des échantillons environnementaux.

Rapport

Les résultats sont exprimés en unités de µg/L de N.

4.2.2.16 Nutriments (AT et PT)), azote total et phosphore total

Paramètre

Nutriments (azote total et phosphore total)

<table>
<thead>
<tr>
<th>Tableau 4.2.2.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de référence de la méthode</td>
</tr>
<tr>
<td>Standard Methods</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
</tr>
<tr>
<td>Méthode 4500 P</td>
</tr>
</tbody>
</table>
Principes de la méthode

Les méthodes pour l’azote total sont décrites à la section 4.2.2.15.

Le terme phosphore total est utilisé pour décrire la somme de tous les phosphores présents dans un échantillon peu importe leur forme. Il englobe toutes les formes d’orthophosphate, de phosphore hydrolysable (ou de phosphates condensés sous forme de pyrophosphates, de métaphosphates et de polyphosphates) et le phosphore organique total.

Le phosphore réactif total (parfois appelé « orthophosphate total ») est une mesure de phosphate qui répond à des tests colorimétriques sans devoir procéder au préalable à une hydrolyse ou une digestion de l’échantillon par oxydation. C’est avant tout une mesure de l’orthophosphate, toutefois une petite fraction de phosphates condensés est généralement inévitablement hydrolysée. Le phosphore réactif dissous (parfois appelée « orthophosphate dissous ») est mesuré de la même manière après que l’échantillon ait été filtré à l’aide d’un filtre de 0,45 µm.

L’hydrolyse par voie acide à des températures d’ébullition convertit les phosphates condensés en orthophosphate dissous. L’hydrolyse libère inévitablement certains phosphates provenant des composés organiques. Le terme « phosphore hydrolysable en milieu acide » est préféré au terme « condensat de phosphore ».

Les fractions de phosphate converties en orthophosphate par destruction par oxydation de la matière organique présente sont considérées comme du « phosphore organique » ou du « phosphore lié aux composés organiques ».

Ces trois formes peuvent se produire en forme dissoute ou en suspension.

Dans le cas du phosphore total, l’échantillon tel que reçu est soumis à une digestion à l’acide fort, qui convertit toutes les formes de phosphore en orthophosphate. La digestion peut être effectuée hors circuit ou par analyse automatisée au moyen de rayons UV et de persulfate.

Quelle que soit la fraction de phosphore souhaitée, l’orthophosphate est mesuré par colorimétrie manuelle ou automatisée. Il existe plusieurs procédures colorimétriques, mais la plus couramment utilisée est la méthode de réduction à l’aide d’acide ascorbique. Dans cette méthode, le molybdate d’ammonium et le tartrate d’antimoine et de potassium réagissent en milieu acide avec des solutions diluées de phosphore pour former un complexe d’antimoine-phosphomolybdate. Ce complexe est réduit en complexe de couleur bleu intense en utilisant de l’acide ascorbique. La coloration est proportionnelle à la concentration de phosphore qui possède une colorimétrie de 880 nm.

Le phosphore total peut également être mesuré par ICP-OES ou ICP-MS à condition que les exigences de SDL soient respectées. Ces procédures sont moins sensibles que la méthode colorimétrique.

Rapport

Les résultats sont exprimés en unités de µg/L de P.

4.2.2.17 Taille des particules

Paramètres

- Classification des sols : sable grossier, sable fin
- Classification des sols : sable, limon, argile
Tableau 4.2.2.17

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Sampling and Methods of Analysis, 2nd edition, Carter et Gregorich, Editors</td>
<td>Préparation de l’échantillon et analyse Chapitre 55, Particle Size Distribution</td>
<td></td>
</tr>
<tr>
<td>ASTM</td>
<td>D422</td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Détermination de la taille des particules : sable fin et sable grossier

Les échantillons de sol qui reçoivent sont tamisés avec un tamis à mailles de calibre 200 (0,075 mm) et avec de l’eau. Des précautions sont prises pour ne pas briser les plus grosses particules. Le tamisat est recueilli dans un bac. Le tamis et le bac sont séchés et pesés. On calcule le pourcentage de sol retenu sur le tamis ainsi que le pourcentage de tamisat du tamis de calibre 200. Si > 50% du sol passe à travers le tamis, le sol est classifié en tant que « sable fin », sinon il est classifié en tant que « sable grossier ».

Le O. Reg 153/04 exige que toutes les particules de > 2 mm (tamis de calibre 10) soient retirées avant d’appliquer la méthode décrite ci-dessus. D’autres provinces ou territoires peuvent exiger que la détermination des sables fins et grossiers soit basée sur l’échantillon entier.

Détermination de la taille des particules : sable, limon et argile

Les échantillons de sol qui reçoivent sont passés à travers une série de tamis à mailles de calibre 4 (4,75 mm) à calibre 200 (0,075 mm) ou plus fins. La série doit inclure un tamis de calibre 10 (2 mm). De plus, une deuxième aliquote est soumise à une analyse à l’hydromètre lorsque le sol est mis en suspension dans l’eau par agitation/inversion au moyen d’un agent dispersant. Le cylindre est placé en position verticale et une série de lectures sur l’hydromètre sont prises dans le temps.

La mesure du sable, du limon et de l’argile est toujours déterminée sur la fraction < 2 mm seulement. Une courbe semilogarithmique (pourcentage de tamisat/taille des particules) est élaborée à partir des mesures et utilisée pour calculer le pourcentage de sable, de limon et d’argile. Les intervalles sont conformes au système de classification de l’USDA et au Système canadien de classification des sols, et peuvent être utilisés avec les diagrammes triangulaires de l’USDA et du Système canadien de classification des sols.

Sable : de 2 mm à 0,5 mm
Limon : de 0,05 mm à 0,002 mm
Argile : < 0,002 mm

Rapport

Les proportions de sol retenu sur le tamis de calibre 200, et de sol ayant traversé le tamis, sont rapportées en pourcentage. La classification du sol en tant que « sable fin » ou « sable grossier » est aussi rapportée.

Les fractions de sable, de limon et d’argile sont rapportées en pourcentage, la somme étant égale à 100 %. Le diagramme connexe est aussi inclus dans le rapport.
4.2.2.18 pH par potentiométrie

Paramètres

pH dans le sol et les sédiments

Tableau 4.2.2.18

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l’échantillon SW-846, Méthode 9045D</td>
<td>Préparation de l’échantillon N/D</td>
</tr>
<tr>
<td></td>
<td>Analyse d’échantillon SW-846, Méthode 9045D</td>
<td>Analyse Méthode 150.1</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 2310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 4500 H⁺</td>
</tr>
<tr>
<td>MECCO</td>
<td>E3137</td>
<td>E3218</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
<td></td>
<td>MA. 100 - pH 1.1</td>
</tr>
</tbody>
</table>

Principes de la méthode

Les échantillons d’eau sont analysés, de préférence sur le terrain, au moyen d’un pH-mètre étalonné et d’une électrode. Pour les sols, une partie d’échantillon d’au moins 10 g, séchée ou telle que reçue, est extraite par agitation avec 20 ml de solution de chlorure de 0,01 M de calcium pendant au moins 30 minutes. La phase aqueuse est séparée du sol par centrifugation ou décantation avant d’être analysée à l’aide d’un pH-mètre et d’une électrode. Des proportions plus élevées peuvent être requises pour certains types d’échantillons (tourbes, argiles fines) afin d’obtenir suffisamment de liquide pour l’analyse.

Note : 10 g est la taille minimale d’un échantillon représentatif de sol. Des poids plus élevés peuvent être utilisés, mais la proportion 2:1 (v/p) de chlorure de calcium aqueux par rapport au sol doit être maintenue.

Le pH d’une solution représente le logarithme négatif de l’activité des ions hydrogène, et en solution diluée l’activité est à peu près égale à la concentration de l’ion hydrogène. Ainsi,

\[pH = -\log_{10}[H^+] \]

Puisque l’activité de l’ion hydrogène ne peut être mesurée directement, elle est mesurée par potentiométrie avec une électrode de verre combinée à une électrode de référence.

Rapport

Le pH mesuré dans l’extrait de sol ou l’échantillon aqueux est exprimé en unités de pH.

4.2.2.19 Composés chlorés réactifs

Paramètres

Composés chlorés réactifs
Tableau 4.2.2.19

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Methods</td>
<td>SM 4500Cl G</td>
<td></td>
</tr>
<tr>
<td>Hach Company</td>
<td>Méthode 7019</td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Les composés chlorés réactifs comprennent le chlore résiduel total, le chlore résiduel combiné, le chlore total disponible, l’acide hypochloreux, la chloramine, le chlore combiné disponible, le chlore résiduel libre, le chlore libre et les oxydants dérivés du chlore.

L’acide hypochloreux et l’ion hypochlorite oxydent la N,N-diéthyl-p-phénylènediamine (DPD) pour former une couleur magenta. Comme la réaction dépend du pH, un tampon est ajouté. De l’iodure de potassium est ajouté au mélange réactionnel afin de mesurer les formes combinées de chlore et de chlore disponible total. Les chloramines oxydent l’iodure en iode, puis l’iode libéré réagit avec la DPD pour former la couleur magenta. En raison de l’instabilité des composés chlorés, ces essais sont effectués sur le terrain, et la trousse Hach UL DPD offre la meilleure sensibilité, bien qu’aucune méthode ne permette d’atteindre la RCQE de 0,5 g/L.

Rapport

Les résultats sont exprimés en unités de µg/L de Cl₂.

4.2.2.20 Salinité

Paramètres

<table>
<thead>
<tr>
<th>Salinité</th>
</tr>
</thead>
</table>

Tableau 4.2.2.20

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 2520B</td>
</tr>
</tbody>
</table>

Principes de la méthode

La salinité est une importante propriété sans unité des eaux industrielles et naturelles. Elle a été initialement conçue comme une mesure de la masse de sels dissous dans une masse donnée de solution. La détermination expérimentale de la teneur en sel par séchage et pesée présente quelques difficultés en raison de la perte de certains composants. Le seul moyen fiable pour mesurer la salinité vraie ou absolue d’une eau naturelle est de procéder à une analyse chimique complète. Toutefois, cela prend du temps, et ne peut atteindre la précision requise pour des travaux de grande exactitude. Par conséquent, la salinité est établie au moyen de méthodes indirectes comprenant la mesure de propriétés physiques comme la conductivité, la densité, la vitesse du son ou l’indice de réfraction. Il est possible de calculer la salinité à partir d’une relation empirique de la salinité et des propriétés physiques prédéterminées d’une solution étalon. En raison de la simplicité et de la précision de cette mesure, la conductivité est couramment utilisée.

Veuillez consulter la méthode 2520B de Standard Methods pour des calculs plus détaillés.
Calculs et rapports

La salinité est une quantité sans unité de mesure.

\[
\text{Salinité (valide pour salinité calculée de 2 à 42)} = a_0 + a_1 R_1^{1/2} + a_2 R_1 + a_3 R_1^{3/2} + a_4 R_1^2 + a_5 R_1^{5/2} + \Delta S
\]

\[
\text{Salinité (valide de 0 à 40)} = S_{PSS} \times \frac{a_0}{1 + 1.5 X + X^2} \left(1 + Y^{1/2} + Y^{3/2} \right)
\]

\[
\Delta S = \frac{t-15}{t+0.0162(t-15)} \times \left(b_0 + b_1 R_1^{1/2} + b_2 R_1 + b_3 R_1^{3/2} + b_4 R_1^2 + b_5 R_1^{5/2} \right)
\]

Rapport de conductivité

\[
R_1 = \frac{C(\text{échantillon} - at - t)}{C(KCl - solution - at - t)}
\]

\[
f(t) = \frac{t-15}{t+0.0162(t-15)}
\]

Où :

\[
\begin{align*}
a_0 &= 0.0080 & a_3 &= 14.0941 & b_0 &= 0.0005 & b_3 &= -0.0375 \\
a_1 &= -0.1692 & a_4 &= -7.0261 & b_1 &= -0.0056 & b_4 &= 0.0636 \\
a_2 &= 25.3851 & a_5 &= 2.7081 & b_2 &= -0.0066 & b_5 &= -0.0144
\end{align*}
\]

\[C = \text{Conductivité (32,4356 g de KCl dans 1 kg de solution produit une salinité de 35)}\]

\[t = \text{Température (°C)}\]

\[S_{PSS} = \text{Valeur établie à l’aide de l’échelle de salinité pratique (Standard Methods)}\]

\[X = 400R_1\]

\[Y = 100R_1\]

4.2.2.21 Rapport d’adsorption du sodium (RAS)

Paramètre

RAS dans les sols et les sédiments

Tableau 4.2.2.21

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
</table>
| US EPA | Préparation de l’échantillon
SW-846, Méthode 3010A
SW-846, Méthode 3050B
Analyse
SW-846, Méthode 6010C
SW-846, Méthode 6020A | | |
| Standard Methods | Méthode 3030 B
Méthode 3030 E | | |
| *Soil Sampling and Methods of Analysis, 2nd Edition, Carter and Gregorich, Editors* | 15.2.1 Extrait de saturation
15.4.4 Calcul du rapport d’adsorption du sodium | | |
Principes de la méthode

Une portion de 5 g d’échantillon séché, désagrégé et tamisé (<2 mm) est extraite par agitation pendant 30 minutes avec 10 ml d’eau désionisée. Pour certains types de sol, une proportion plus élevée de sol et d’eau peut être nécessaire pour obtenir suffisamment de liquide pour la mesure. Dans certaines provinces ou certains territoires, le RAS est établi à l’aide d’un extrait de pâte saturée. Voir la section 4.2.2.4 sur le chlorure pour plus de détails à ce sujet.

L’extrait aqueux est séparé du solide, acidifié puis analysé au moyen d’une technique de spectrométrie. La technique par ICP-OES est recommandée, mais il est également possible d’utiliser les techniques de SAA et de ICP-MS.

Calculs et rapports

Les concentrations de sodium, de calcium et de magnésium sont exprimées en unités de milliéquivalents par litre. Le RAS est déterminé à l’aide de l’équation ci-dessous. Puisque le RAS est un ratio, il est sans unité.

\[
RAS = \frac{[Na^+]}{\sqrt{\left(\frac{1}{2}[Ca^{2+}]+[Mg^{2+}]\right)}}
\]

Le RAS étant un ratio, l’approche habituelle de calcul de la limite de détection ne s’applique pas. Les valeurs numériques des RAS peuvent uniquement être calculées lorsque des résultats valides (au-dessus des SDL) sont disponibles pour le sodium et au moins pour le calcium ou le magnésium (si l’un ou l’autre de Ca et Mg sont < SDL, utilisez zéro pour ce paramètre). Utilisez les méthodes suivantes pour présenter les RAS lorsque ces conditions ne sont pas remplies :

1. Lorsque le Ca et le Mg sont tous deux en dessous du SDL, présentez le RAS comme étant « non calculable ». Une valeur « < SDL » ne peut pas être rapportée, car le RAS augmente alors que le Ca et le Mg diminuent.

2. Lorsque le Na est en dessous du SDL, mais que l’un du Ca et du Mg ou les deux sont au-dessus du SDL, calculez la valeur RAS la plus élevée que possible en utilisant la valeur numérique du SDL pour le Na et les résultats obtenus pour le Ca et le Mg (utilisez une valeur zéro pour le Ca ou le Mg s’ils se situent en dessous du SDL). Indiquez que le RAS est moindre que cette valeur maximale calculée (semblable à un SDL).

4.2.2.22 Substrat de lit

Paramètres

| Substrat de lit |

Tableau 4.2.2.22

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division de la protection de l’environnement du ministère de l’Environnement de la Colombie-Britannique</td>
<td>Échantillonnage, préparation de l’échantillon et analyse Qualité de l’eau Stratégie d’échantillonnage pour la turbidité, sédiments en</td>
<td></td>
</tr>
</tbody>
</table>
Principes de la méthode

Les documents de référence de la méthode fournissent des renseignements supplémentaires sur l’échantillonnage. Les critères concernant le substrat de lit prévoient que la répartition des substrats provenant du lit d’un cours d’eau ne doit pas excéder 10 % < 2 mm, 19 % < 3 mm et 25 % < 6,35 mm. De plus, le diamètre géométrique moyen ne doit pas excéder 12 mm.

Les échantillons sont séchés, désagrégés et passés dans un ensemble de tamis de tailles appropriées. Le pourcentage retenu par chaque tamis est déterminé par gravimétrie et les résultats inscrits sous forme de graphique. Les pourcentages < 2 mm, < 3 mm, < 6,35 mm et la moyenne géométrique sont établis à l’aide du graphique.

Il existe également un critère concernant l’oxygène dissous inter-gravier, qui est déterminé conformément à la section 4.2.2.11

4.2.2.23 Sulfate

Paramètres

Sulfate

Tableau 4.2.2.23

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td>Préparation de l’échantillon Méthode 300.0 Rév 2.1 Méthode 375.4 Analyse Méthode 300.0 Rév 2.1 Méthode 300.1 Rév 1.0 Méthode 375.4</td>
</tr>
<tr>
<td>Manual of Soil Sampling and Methods of Analysis, McKeague, Editor</td>
<td>Méthode 4.12</td>
<td></td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 4500 SO4 E Méthode 4110 B</td>
</tr>
</tbody>
</table>
Principes de la méthode

Les échantillons sont analysés tels que reçus, sauf si la filtration est nécessaire pour éliminer les particules. L’analyse est faite par chromatographie ionique ou par turbidité automatisée du sulfate de baryum.

Rapport

Les résultats sont exprimés en unités de µg/L de SO₄.

4.2.2.24 Soufre (élémentaire)

Paramètres

Soufre (élémentaires)

Tableau 4.2.2.24

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td>Préparation de l’échantillon SW-846, Méthode 3540C SW-846 Méthode 3570</td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Les échantillons de sol préalablement séchés, désagrégés et tamisés (< 2 mm) sont extraits à l’aide d’un solvant. L’extrait est ensuite digéré à l’aide d’acide et le digestat analysé par ICP-OES conformément à la section 4.2.1. En variante, le soufre contenu dans l’extrait est mis en réaction avec du cyanure de sodium pour produire du thiocyanate. Lorsqu’il est mélangé avec du chlorure ferrique, le thiocyanate déplace l’ion chlorure et forme un complexe rouge (thiocyanate ferreux). Ce complexe est mesuré par colorimétrie à 465 nm. Des extraits fortement colorés peuvent interférer. L’interférence est minimisée par la mesure et la soustraction d’un échantillon uniquement de fond. L’extrait au solvant peut également être mesuré par HPLC avec détection UV.

Rapport

Les résultats sont exprimés en unités de mg/kg de S.
4.2.2.25 Sédiments en suspension (Total des solides en suspension)

Paramètres

Sédiments en suspension

Tableau 4.2.2.25

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Methods</td>
<td></td>
<td>SM2540</td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td>E3188</td>
</tr>
</tbody>
</table>

Principes de la méthode

Voir la section 4.2.2.21, substrat de lit, et les références qui y sont citées pour obtenir des lignes directrices au sujet de l'échantillonnage. L'échantillon reçu est agité, et l'aliquote filtrée à travers un filtre de fibre de verre préalablement séché et pesé. Le filtre est séché à 105 ± 5 °C, pesé de nouveau et les sédiments en suspension (TSS) déterminés par la différence.

Rapport

Les résultats sont exprimés en mg/L de TSS.

4.2.2.26 Turbidité

Paramètres

Turbidité

Tableau 4.2.2.26

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td></td>
<td>Préparation de l'échantillon N/A Analyse Méthode 180.1 Rév 2.0</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 2130B</td>
</tr>
<tr>
<td>Division de la protection de l'environnement du ministère de l'Environnement de la Colombie-Britannique</td>
<td></td>
<td>Water Quality Sampling Strategy for Turbidity, Suspended and Benthic Sediments Technical Appendix Addendum Apr 1997</td>
</tr>
</tbody>
</table>
Principes de la méthode

La turbidité est mesurée à l’aide d’un turbidimètre. Les turbidimètres avec détecteurs de diffusion de la lumière situés à 90° du faisceau incident s’appellent néphélomètres. Les néphélomètres sont relativement peu affectés par de petites différences dans les paramètres de conception. Par conséquent, ils sont recommandés comme instrument de référence pour la mesure de faibles turbidités. Les néphélomètres sont étalonnés avec une série d’étalons de turbidité connus.

Rapport

Les résultats sont exprimés en unités de turbidité néphélométrique (NTU).

4.2.2.27 Matières totales dissoutes

Paramètres

Matières totales dissoutes

<table>
<thead>
<tr>
<th>Tableau 4.2.2.27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de référence de la méthode</td>
</tr>
<tr>
<td>Standard Methods</td>
</tr>
<tr>
<td>MECCO</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale</td>
</tr>
</tbody>
</table>

Principes de la méthode

Une aliquote de l’échantillon est filtrée à l’aide d’un filtre en fibre de verre, et le filtrat est évaporé à sec à 180 ± 2 °C dans un contenant pré-pesé. Le contenant et le résidu sont refroidis et pesés jusqu’à l’atteinte d’un poids constant. Les matières totales dissoutes (MTD) sont mesurées par différence. Bien que cela ne soit généralement pas admissible à des fins réglementaires, la MTD peut aussi être calculée en mesurant et en additionnant les cations et les anions majeurs. Cela constitue également une bonne vérification dans le cadre du CQ.

Rapport

Les résultats sont exprimés en unités de mg/L.
4.3 Microbiologie

4.3.1 Coliformes

Paramètres

Coliformes fécaux (*Escherichia coli*)
Coliformes totaux

Tableau 4.3.1

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA</td>
<td></td>
<td>Préparation de l’échantillon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 1604</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 9215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyse</td>
</tr>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Méthode 9221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 9222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Méthode 9223</td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td>Préparation de l’échantillon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3407</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3408</td>
</tr>
<tr>
<td>Centre d’expertise en analyse</td>
<td></td>
<td>MA. 700 - Ec-Tm 1.0</td>
</tr>
<tr>
<td>environnementale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Principes de la méthode

Il existe de nombreuses méthodes acceptables pour mesurer les coliformes totaux et fécaux. Toutes les méthodes requièrent de strictes procédures de stérilisation et de manipulation pour éviter la contamination. La procédure décrite ci-dessous, MECCO E3407, a été choisie parce qu’elle permet la détection et le dénombrement simultanés des coliformes totaux et d’*Escherichia coli* (*E. coli*) avec une filtration unique sur une plaque d’agar unique à l’aide d’agar différentiel de coliformes (agar DC), incubées à une température de (35 ± 0,5 °C) pendant 24 ± 2 heures.

Un vide est utilisé pour soutirer un volume mesuré de liquide à travers un filtre (membrane) d’ester de cellulose blanc quadrillé possédant un diamètre de 47 mm et des pores de 0,45 μm. La taille des pores de la membrane permet de capturer les bactéries. Après filtration, les filtres sont placés sur des plaques d’agar DC qui sont ensuite incubées à 35 ± 0,5 °C pendant 24 ± 2 heures. L’agar DC a été spécialement conçu pour permettre la différenciation visuelle des coliformes provenant des colonies d’*E. coli* : les bactéries *E. coli* sont bleues, les coliformes sont rouges, et les non-cibles sont jaunes. À la fin de la période d’incubation, le nombre de coliformes et d’unités formatrices de colonies (UFC) d’*E. coli* est totalisé et noté.
Calculs et rapport

Les résultats sont exprimés en nombre d’unités formatrices de colonies/100 mL. Lorsqu’aucune colonie n’est détectée, les résultats sont exprimés en tant que < 1 CFU/100 mL. Lorsque moins de 100 mL sont filtrés, le « < » est ajusté en conséquence, par exemple pour un échantillon de 10 mL sans détection, le résultat est exprimé en < 10 CFU/100 mL.

\[
\frac{\text{Nombre de colonies comptées x 100}}{\text{mL échantillon filtré}} = \text{nombre de CFU/100 mL}
\]

4.3.2 *Cyanobactérie*

Paramètres

Cyanobactérie (algue bleu-vert)

* Souvent associée à l’analyse de la chlorophylle *a* et des nutriments.

Tableau 4.3.2

<table>
<thead>
<tr>
<th>Source de référence de la méthode</th>
<th>Sols et sédiments</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Methods</td>
<td></td>
<td>Préparation et analyse de l'échantillon</td>
</tr>
<tr>
<td>MECCO</td>
<td></td>
<td>Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management.</td>
</tr>
<tr>
<td>Centre d'expertise en analyse environnementale</td>
<td></td>
<td>Préparation de l'échantillon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA. 800 - Cya.dep 1.0</td>
</tr>
</tbody>
</table>

Principes de la méthode

de peinture ou d’écume bleu vert. L’association de la toxicité avec de telles éclosions a souvent causé la fermeture d’eaux de baignade et de loisirs lorsque des éclosions surviennent. En raison de leurs caractéristiques photosynthétiques et aquatiques, les cyanobactéries sont souvent appelées « algues bleu vert ». Ce nom est commode pour parler d’organismes dans l’eau qui fabriquent leur propre nourriture, mais ne reflète aucune relation entre les organismes appelés cyanobactéries et les algues.

La plupart des cyanobactéries peuvent être distinguées des autres phytoplanctons et particules au microscope à un grossissement de 200 à 1000 fois par rapport à l’étalon de référence en raison de leurs caractéristiques morphologiques. La taxonomie des cyanobactéries, selon le code botanique reconnu, se différencie par genres et espèces. Cependant, cette différenciation est entourée d’une certaine incertitude, et les organismes classés comme appartenant à la même espèce peuvent néanmoins avoir des différences génétiques importantes, notamment en ce qui a trait à la production de microcystine.

Calculs et rapport

Les espèces identifiées sont comptabilisées et notées.
5 PRODUCTION DE RAPPORTS

5.1 Seuils de déclaration par les laboratoires (SDL)

Seuil de déclaration par les laboratoires (SDL) : La plus faible concentration d’un analyte rapportée avec un degré raisonnable d’exactitude et de précision, souvent synonyme de limite de dosage (LD) ou de limite de dosage pratique (LDP). Le SDL correspond généralement à 3 à 10 fois la limite de détection de la méthode (LDM), mais doit être ≥ que la LDM. Le SDL est la concentration à laquelle une analyse unique effectuée à l’aide des méthodes et des matrices mentionnées dans le présent document détectera de façon constante les analytes cibles lorsqu’ils sont présents.

L’incertitude concernant la concentration de l’analyte augmente près de la limite de détection. Certains laboratoires peuvent aussi signaler les concentrations détectées entre la LDM et le SDL (résultats marqués d’un J), mais ces concentrations devraient être considérées comme des estimations. Les limites de détection peuvent être augmentées en raison des effets de matrice ou de la dilution de l’échantillon. D’autres méthodes de production de rapports, comme faire rapport en fonction des limites de détection basées sur le rapport signal-bruit de l’échantillon, sont acceptables pour les méthodes de dilution des isotopes et lorsque cela est imposé par la méthode de référence.

Les SDL sont idéalement au moins 1/5e plus faibles que la RCQE. Toutefois, cela n’est pas réalisable pour plusieurs analytes à l’aide des méthodes et des instruments d’analyse traditionnels. Pour trois analytes, le chlore réactif et la deltaméthrine dans l’eau et le toxaphène dans les sédiments, la RCQE la plus faible n’est pas réalisable.

Lorsque des données analytiques sont fournies à titre de comparaison avec une recommandation plus élevée, une méthode moins sensible peut être utilisée, à condition que le SDL soit 1/5e plus élevé que la recommandation.

Dans le tableau 5.1, Seuils de déclaration par les laboratoires – Eau et sols et sédiments :

- La colonne « critère le plus bas » indique la RCQE ou la recommandation du MECCO la plus basse pour chaque paramètre. La mention S/V indique l’absence de RCQE ou de recommandation du MECCO pour ce paramètre ou cette matrice. Dans les cas où il existe à la fois une RCQE et une recommandation du MECCO, les deux sont notées.

- D’autres provinces et territoires peuvent posséder des critères pour l’eau et le sol pour un analyse donné, mais les valeurs du MECCO sont fournies dans le présent document en plus des valeurs tirées des RCQE, car ce recueil s’appuie sur le document de présentation des méthodes récemment publié par le MECCO. Les valeurs de l’Ontario sont donc fournies comme information de référence en l’absence de valeurs du CCME. Les provinces et les territoires peuvent appliquer les recommandations comme cela est requis dans le cadre de leurs programmes, de leur législation et de leur réglementation respectifs.

- Une ébauche de recommandations fédérales intérimaires pour la qualité de l’eau souterraine est en cours d’examen. Chaque fois que les ébauches de recommandations sont inférieures à la RCQE la plus faible, elles sont notées en rouge dans le texte accompagnées d’un astérisque.
<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l'eau (µg/L)</th>
<th>SDL maximal recommandé pour l'eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aniline</td>
<td>Organique</td>
<td>191-56-3</td>
<td>ABN</td>
<td>2,2</td>
<td>0,4</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Biphényle, 1,1'-'</td>
<td>Organique</td>
<td>92-52-4</td>
<td>ABN</td>
<td>0,5 MECCO</td>
<td>0,1</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Oxyde de bis(2-chloroéthyle)</td>
<td>Organique</td>
<td>111-44-4</td>
<td>ABN</td>
<td>5 MECCO</td>
<td>1</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Oxyde de bis(2-chloroisopropyl)</td>
<td>Organique</td>
<td>39638-32-9</td>
<td>ABN</td>
<td>4 MECCO</td>
<td>1</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Chloroaniline, p-</td>
<td>Organique</td>
<td>106-47-8</td>
<td>ABN</td>
<td>10 MECCO</td>
<td>10</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Phtalate de bis (2-éthylhexyle)</td>
<td>Organique Esters de phthalate</td>
<td>117-81-7</td>
<td>ABN</td>
<td>16 CCME 10 MECCO</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Dichlorobenzidine, 3,3'-'</td>
<td>Organique</td>
<td>91-94-1</td>
<td>ABN</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>1 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Phtalate de diéthyle</td>
<td>Organique</td>
<td>84-66-2</td>
<td>ABN</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Diméthylphénol, 2,4-</td>
<td>Organique</td>
<td>105-67-9</td>
<td>CPNC ou ABN</td>
<td>10 MECCO</td>
<td>2</td>
<td>0,2 MECCO</td>
<td>0,2</td>
</tr>
<tr>
<td>Phtalate de diméthyle</td>
<td>Organique</td>
<td>131-11-3</td>
<td>ABN</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Phtalate de di-n-butyle</td>
<td>Organique Esters de phthalate</td>
<td>84-74-2</td>
<td>ABN</td>
<td>19</td>
<td>4</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dinitrophénol, 2,4-</td>
<td>Organique ABN</td>
<td>51-28-5</td>
<td>CPNC ou ABN</td>
<td>10 MECCO</td>
<td>10</td>
<td>2 MECCO</td>
<td>0,2</td>
</tr>
<tr>
<td>Dinitrotoluène, 2,4- (2,6-)</td>
<td>Organique ABN</td>
<td>121-14-2</td>
<td>ABN</td>
<td>5 MECCO</td>
<td>5</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Phtalate de di-n-octyle</td>
<td>Organique Esters de phthalate</td>
<td>117-84-0</td>
<td>ABN</td>
<td>S/V</td>
<td>2</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Phénol</td>
<td>Organique Composés hydroxy aromatiques</td>
<td>108-95-2</td>
<td>CPNC ou ABN</td>
<td>5 MECCO</td>
<td>1</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Composés phénoliques non chlorés</td>
<td>Organique Composés hydroxy aromatiques non halogénés</td>
<td></td>
<td>CPNC ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Phénols (monohydriques et dihydriques)</td>
<td>Organique Composés hydroxy aromatiques</td>
<td>108-95-2</td>
<td>CPNC ou ABN</td>
<td>2</td>
<td>0,8</td>
<td>3,8</td>
<td>1</td>
</tr>
<tr>
<td>Esters d’acide phtalique</td>
<td>Organique Esters de phthalate</td>
<td></td>
<td>ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>30</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Sections 2.1.2 et 4.1.2 Chlorophénols (CP)

<table>
<thead>
<tr>
<th>Nom chimique (Organique)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophénol, 2-</td>
<td>Organique CP ou ABN</td>
<td>95-57-8</td>
<td>CP ou ABN</td>
<td>2 MECCO</td>
<td>0,5</td>
<td>0,1 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Dichlorophénol, 2,4-</td>
<td>Organique Phénols chlorés</td>
<td>120-83-2</td>
<td>CP ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05 CCME</td>
<td>0,1 MECCO</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dichlorophénols</td>
<td>Organique Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td>CP ou ABN</td>
<td>0,2</td>
<td>0,2</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Monochlorophénols</td>
<td>Organique Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td>CP ou ABN</td>
<td>7</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Pentachlorophénol (PCP)</td>
<td>Organique Composés aromatiques monocycliques Phénols chlorés</td>
<td>87-86-5</td>
<td>CP ou ABN</td>
<td>0,5 CCME</td>
<td>0,5 MECCO</td>
<td>7,6 CCME</td>
<td>0,1</td>
</tr>
<tr>
<td>Tétrachlorophénol, 2,3,4,6-</td>
<td>Organique Composés aromatiques monocycliques Phénols chlorés</td>
<td>58-90-2</td>
<td>CP ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Tétrachlorophénols</td>
<td>Organique Composés aromatiques monocycliques Phénols chlorés</td>
<td>25167-83-3</td>
<td>CP ou ABN</td>
<td>1</td>
<td>0,2</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Trichlorophénol, 2,4,5-</td>
<td>Organique Composés organiques volatils CP or ABN</td>
<td>95-95-4</td>
<td>CP ou ABN</td>
<td>0,2 MECCO</td>
<td>0,2</td>
<td>0,1 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Trichlorophénol, 2,4,6-</td>
<td>Organique</td>
<td>88-06-2</td>
<td>CP ou ABN</td>
<td>0,2 MECCO</td>
<td>N/D</td>
<td>0,05 CCME 0,1 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorophénols</td>
<td>Organique</td>
<td></td>
<td>CP ou ABN</td>
<td>18</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.1.3 et 4.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxane, 1,4-</td>
<td>Organique</td>
<td>123-91-1</td>
<td>ABN ou COV</td>
<td>NRG CCME 50 MECCO</td>
<td>20</td>
<td>0,2 MECCO</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Composés organiques volatils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychlorinated dibenzo-p-dioxins/dibenzo furans</td>
<td>Organique</td>
<td></td>
<td></td>
<td>DDPC 0,015 ng/L TEQ MECCO</td>
<td>0,015 ng/L TEQ</td>
<td>0,85 ng/kg TEQ CCME 7 ng/kg TEQ MECCO</td>
<td>0,8 ng/kg TEQ</td>
</tr>
<tr>
<td></td>
<td>Composés polyaromatiques Dioxines et furannes polychlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.1.4 et 4.1.4 Glycols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diéthylène glycol</td>
<td>Organique</td>
<td>111-46-6</td>
<td>Glycol</td>
<td>S/V 5000</td>
<td>S/V</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glycols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Éthylène glycol</td>
<td>Organique</td>
<td>107-21-1</td>
<td>Glycol</td>
<td>192 000 190 000*</td>
<td>5000</td>
<td>960</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Glycols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sections 2.1.5 et 4.1.5 Pesticides organochlorés (PO)

<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylène glycol</td>
<td>Organique Glycols</td>
<td>57-55-6</td>
<td>Glycol</td>
<td>500 000</td>
<td>10 000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
</tbody>
</table>

Aldrin

<table>
<thead>
<tr>
<th>Nom chimique</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlordane</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>309-00-2</td>
<td>PO Pesticides</td>
<td>3* 0,01 MECCO</td>
<td>0,01</td>
<td>0,002 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>alpha-Chlordane</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>57-74-9 5103-71-9 5566-34-7</td>
<td>PO pesticides</td>
<td>0,004* 0,06 MECCO</td>
<td>0,0002</td>
<td>0,0045 CCME 0,007 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>beta-Chlordane</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>72-54-8</td>
<td>PO pesticides</td>
<td>1,8 MECCO</td>
<td>0,1</td>
<td>0,00122 CCME 0,008 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Dichloro diphényl dichloroéthane, 2,2-Bis(p-chlorophényl)-1,1-dichloroéthane</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>72-55-9</td>
<td>PO pesticides</td>
<td>10 MECCO</td>
<td>0,1</td>
<td>0,00207 CCME 0,005 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Dichloro diphényl éthylène, 1,1-Dichloro-2,2-Bis(p-chlorophényl)-éthène</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>50-29-3</td>
<td>PO pesticides</td>
<td>0,001* 0,05 MECCO</td>
<td>0,02</td>
<td>0,00119 CCME 0,007 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>Organique Pesticides Composés organochlors</td>
<td>60-57-1</td>
<td>PO pesticides</td>
<td>0,056* 0,05 MECCO</td>
<td>0,02</td>
<td>0,00071 CCME 0,002 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>Organique Pesticides Composés organochlors</td>
<td>115-29-7 195-59-6 33213-65-9</td>
<td>PO pesticides</td>
<td>0,002 CCME 0,05 MECCO</td>
<td>0,002</td>
<td>0,04 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Endrin</td>
<td>Organique Pesticides Composés organochlors</td>
<td>72-20-8</td>
<td>PO pesticides</td>
<td>0,036* 0,05 MECCO</td>
<td>0,02</td>
<td>0,00267 CCME 0,003 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Heptachlore</td>
<td>Organique Pesticides Composés organochlors</td>
<td>76-44-8</td>
<td>PO pesticides</td>
<td>0,0038* 0,01 MECCO</td>
<td>0,002</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Heptachlorépoxyde</td>
<td>Organique Pesticides/Herbicides/Fongicides PO pesticides</td>
<td>1024-57-3</td>
<td>PO pesticides</td>
<td>0,01 MECCO</td>
<td>0,01</td>
<td>0,0006 CCME 0,005 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Hexachlorobenzène</td>
<td>Organique Composés aromatiques monocycliques Benzènes chlorés</td>
<td>118-74-1</td>
<td>PO pesticides</td>
<td>0,52 CCME 0,01 MECCO</td>
<td>0,01</td>
<td>0,05 CCME 0,01 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hexachlorobutadiène (HCBD)</td>
<td>Organique</td>
<td>87-68-3</td>
<td>PO pesticides</td>
<td>1,3 CCME</td>
<td>0,2</td>
<td>0,01 MECCO</td>
<td>0,01 MECCO</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexachlorocyclohexane, gamma- (γ-HCH, Lindane, γ-BHC)</td>
<td>Organique</td>
<td>58-89-9</td>
<td>PO pesticides</td>
<td>0,01 CCME</td>
<td>0,01</td>
<td>0,00032 CCME</td>
<td>0,0001 CCME</td>
</tr>
<tr>
<td></td>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés organochlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexachloroéthane</td>
<td>Organique</td>
<td>67-72-1</td>
<td>PO pesticides</td>
<td>0,01 MECCO</td>
<td>0,01</td>
<td>0,01 MECCO</td>
<td>0,01 MECCO</td>
</tr>
<tr>
<td></td>
<td>Pesticides/Herbicides/Fongicides PO Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méthoxychlore</td>
<td>Organique</td>
<td>72-43-5</td>
<td>PO pesticides</td>
<td>0,05 MECCO</td>
<td>0,05</td>
<td>0,05 MECCO</td>
<td>0,05 MECCO</td>
</tr>
<tr>
<td></td>
<td>Pesticides/Herbicides/Fongicides PO Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Métolachlore</td>
<td>Organique</td>
<td>51218-45-2</td>
<td>ABN ou PO pesticides</td>
<td>7,8</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés organochlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorobenzène</td>
<td>Organique</td>
<td>608-93-5</td>
<td>ABN ou PO pesticides</td>
<td>6</td>
<td>1</td>
<td>0,05 MECCO</td>
<td>0,01 MECCO</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Tétrachlorobenzène, 1,2,3,4-</td>
<td>Organique</td>
<td>634-66-2</td>
<td>ABN ou PO pesticides</td>
<td>1,8</td>
<td>0,36</td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tétrachlorobenzène, 1,2,3,5-</td>
<td>Organique</td>
<td>634-90-2</td>
<td>ABN ou PO pesticides</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tétrachlorobenzène, 1,2,4,5-</td>
<td>Organique</td>
<td>95-94-3</td>
<td>ABN ou PO pesticides</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxaphène</td>
<td>Organique</td>
<td>8001-35-2</td>
<td>PO pesticide</td>
<td>0,0002*</td>
<td>0,05‡</td>
<td>0,0001</td>
<td>0,005‡</td>
</tr>
<tr>
<td></td>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés organochlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sections 2.1.6 et 4.1.6 Composés d’organoétain

<table>
<thead>
<tr>
<th>Composés d’organoétain</th>
<th>Organique</th>
<th>CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributylétain</td>
<td>Organique</td>
<td>56-35-9</td>
<td>Organoétain</td>
<td>0,001</td>
<td>0,001</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Composés d’organoétain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricyclohexylétain</td>
<td>Organique</td>
<td>3047-10-7</td>
<td>Organoétain</td>
<td>250</td>
<td>0,005</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Composés d’organoétain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triphénylétain</td>
<td>Organique</td>
<td>56-35-9</td>
<td>Organoétain</td>
<td>0,022</td>
<td>0,005</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Composés d’organoétain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Perfluoroocanesulfonate (PFOS)</td>
<td>Acides sulfoniques perfluorés</td>
<td>1763-23-1</td>
<td>PFOS</td>
<td>0,3</td>
<td>0,02</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Sections 1.1.7 et 4.1.7 Acides sulfoniques perfluorés, acides perfluorocarboxyliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>Organique Pesticides Composés de triazine</td>
<td>1912-24-9</td>
<td>P et H</td>
<td>1,8</td>
<td>0,3</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Bromacil</td>
<td>Organique Pesticides</td>
<td>314-40-9</td>
<td>P et H</td>
<td>0,2</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Organique Pesticides Composés de benzonitrile</td>
<td>1689-84-5</td>
<td>P et H</td>
<td>0,33</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Captain</td>
<td>Organique Pesticides</td>
<td>133-06-2</td>
<td>P et H</td>
<td>1,3</td>
<td>0,5</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Organique Pesticides Pesticides de la famille des carbamates</td>
<td>63-25-2</td>
<td>P et H</td>
<td>0,2</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>Organique Pesticides</td>
<td>1897-45-6</td>
<td>P et H</td>
<td>0,18</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Organique Pesticides</td>
<td>2921-88-2</td>
<td>P et H</td>
<td>0,002</td>
<td>0,003</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Organique Pesticides Composés de triazine</td>
<td>21725-46-2</td>
<td>P et H</td>
<td>0,5 0,5*</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Deltaméthrine</td>
<td>Organique Pesticides</td>
<td>52918-63-5</td>
<td>P et H</td>
<td>0,0004</td>
<td>0,0009†</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Dicamba</td>
<td>Organique Pesticides Acide carboxylique aromatique</td>
<td>1918-00-9</td>
<td>P et H</td>
<td>0,006</td>
<td>0,006</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Diclofop-méthyl</td>
<td>Organique Pesticides</td>
<td>51338-27-3</td>
<td>P et H</td>
<td>0,18</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chlorure de didécyldiméthylammonium (CDDA)</td>
<td>Organique Pesticides</td>
<td>7173-51-5</td>
<td>P et H</td>
<td>1,5</td>
<td>1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Diméthoate</td>
<td>Organique Pesticides Composés organophosphorés</td>
<td>60-51-5</td>
<td>P et H</td>
<td>3</td>
<td>0,6</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Dinosèbe</td>
<td>Organique Pesticides</td>
<td>88-85-7</td>
<td>P et H</td>
<td>0,05</td>
<td>0,05</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Linuron</td>
<td>Organique Pesticides</td>
<td>330-55-2</td>
<td>P et H</td>
<td>0,071</td>
<td>0,07</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Méthoprène</td>
<td>Organique Pesticides/Herbicides/Fongicides</td>
<td>40596-69-8</td>
<td>P et H</td>
<td>0,09</td>
<td>0,05</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Métribuzine</td>
<td>Organique Pesticides Composés de triazine</td>
<td>21087-64-9</td>
<td>P et H</td>
<td>0,5</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Perméthrine</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>52645-53-1</td>
<td>P et H</td>
<td>0,001</td>
<td>0,004</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Picloram</td>
<td>Organique Pesticides</td>
<td>1918-02-1</td>
<td>P et H</td>
<td>29</td>
<td>10</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Simazine</td>
<td>Organique Pesticides Composés de triazine</td>
<td>122-34-9</td>
<td>P et H</td>
<td>0,5</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Tébuthiuron</td>
<td>Organique Pesticides</td>
<td>34014-18-1</td>
<td>P et H</td>
<td>0,27</td>
<td>0,05</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Trifluraline</td>
<td>Organique Pesticides Pesticides de la famille des dinitroanilines</td>
<td>1582-09-8</td>
<td>P et H</td>
<td>0,2</td>
<td>0,01</td>
<td>S/V</td>
<td>N/D</td>
</tr>
</tbody>
</table>

Sections 2.1.8 et 4.1.8 Pesticides et herbicides (P et H)
Sections 2.1.8.1 et 4.1.8.1 Carbamates

<p>| Aldicarbe | Organique Pesticides Pesticides de la famille des carbamates | 116-06-3 | P et H ou Carbamate | 0,15 | 0,03 | S/V | N/D |
| Butyl carbamate de 3-lodo-2-propynyl | Organique Pesticides Pesticides de la famille des | 55406-53-6 | P et H ou Carbamate | 1,9 | 1 | S/V | N/D |</p>
<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbofurane</td>
<td>Organique Pesticides Pesticides de la famille des carbamates</td>
<td>1564-66-2</td>
<td>P et H ou Carbamate</td>
<td>1,8</td>
<td>0,4</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Imidaclopride</td>
<td>Organique Pesticides/Herbicides/Fongicides Carbamate</td>
<td>138261-41-3</td>
<td>P et H ou Carbamate</td>
<td>0,23</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Triallate</td>
<td>Organique Pesticides Pesticides de la famille des carbamates</td>
<td>2303-17-5</td>
<td>P et H ou Carbamate</td>
<td>0,24</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
</tbody>
</table>

Sections 2.1.8 et 4.1.8 Pesticides et herbicides (P et H)
Section 2.1.8.2 Glyphosate

<p>| Glyphosate | Organique Pesticides Composés organophosphorés | 1071-83-6 | P et H ou Glyphosate | 280 | 10 | S/V | N/D |</p>
<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections 2.1.8 et 4.1.8 Pesticides et herbicides (P et H)</td>
<td>Section 2.1.8.3 Herbicides de type phenoxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acide méthylchlorophénoxyacétique (acide 4-chloro-2-méthylphénoxy acétique; acide 2-méthyl-4-chlorophénoxy acétique, MCPA)</td>
<td>Organique Pesticides</td>
<td>94-74-6</td>
<td>P et H ou ABN ou Herbicide phénoxyacide</td>
<td>0.025</td>
<td>0.02</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Herbicides de type phenoxy, Acide dichlorophénoxyacétique, 2,4- (2,4-D))</td>
<td>Organique Pesticides</td>
<td></td>
<td>P et H ou ABN ou Herbicide phénoxyacide</td>
<td>4</td>
<td>0.8</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Sections 2.1.9 et 4.1.9 Hydrocarbures pétroliers (HCP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F1</td>
<td>Organique Autres composés organiques HCP</td>
<td>N/A</td>
<td>HCP</td>
<td>750 MECCO</td>
<td>100</td>
<td>30 CCME** 17 MECCO</td>
<td>10</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F2</td>
<td>Organique Autres composés organiques HCP</td>
<td>N/D</td>
<td>HCP</td>
<td>150 MECCO</td>
<td>150 ou 1/5e de la plus basse recommandation, selon le plus élevé</td>
<td>150 CCME** 10 MECCO</td>
<td>30</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F3</td>
<td>Organique Autres composés organiques HCP</td>
<td>N/D</td>
<td>HCP</td>
<td>500 MECCO</td>
<td>500</td>
<td>300 CCME** 240 MECCO</td>
<td>50</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F4†</td>
<td>Organique Autres composés organiques HCP</td>
<td>N/D</td>
<td>HCP</td>
<td>500 MECCO</td>
<td>500</td>
<td>2800 CCME** 120 MECCO</td>
<td>50</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F4G†</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td>N/D</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Autres composés organiques HCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S/V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.1.10 et 4.1.10 Biphényles polychlorés (BPC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td>Organique</td>
<td>27323-18-8</td>
<td>BPC</td>
<td>S/V</td>
<td>N/D</td>
<td>0,06</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>Composés polyaromatiques Biphényles polychlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biphényles polychlorés</td>
<td>Organique</td>
<td>1336-36-3</td>
<td>BPC</td>
<td>0,2 MECCO</td>
<td>0,1</td>
<td>0,0215</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>Composés polyaromatiques Biphényles polychlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.1.11 et 4.1.11 Dibenzo-p-dioxines polychlorés/Dibenzofuranes (Dioxines/Furanes, PCDD/PCDF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzo-p-dioxines polychlorés/dibenzo furanes</td>
<td>Organique</td>
<td>DDPC</td>
<td>0,015 ng/L TEQ MECCO</td>
<td>0,015 ng/L TEQ</td>
<td>0,85 ng/kg TEQ CCME 7 ng/kg TEQ MECCO</td>
<td>0,85 ng/kg TEQ CCME 7 ng/kg TEQ MECCO</td>
<td>0,8 ng/kg TEQ</td>
</tr>
<tr>
<td></td>
<td>Composés polyaromatiques Dioxines et furanes polychlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acénaphthène</td>
<td>Organique</td>
<td>83-32-9</td>
<td>HAP ou ABN</td>
<td>5,8 CCME 4,1 MECCO</td>
<td>0,5</td>
<td>0,00671 CCME 0,05 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Acénaphylène</td>
<td>Organique</td>
<td>208-96-8</td>
<td>HAP ou ABN</td>
<td>1 MECCO</td>
<td>0,2</td>
<td>0,00587 CCME 0,093 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Acridine</td>
<td>Organique</td>
<td>260-94-6</td>
<td>HAP ou ABN</td>
<td>4,4 CCME 0,05*</td>
<td>0,05</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Anthracène</td>
<td>Autres composé organiques</td>
<td>120-12-7</td>
<td>HAP ou ABN</td>
<td>0,012 CCME 0,1 MECCO</td>
<td>0,01</td>
<td>0,0469 CCME 0,05 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Benz(a)anthracène</td>
<td>Organique</td>
<td>56-55-3</td>
<td>HAP ou ABN</td>
<td>0,018</td>
<td>0,01</td>
<td>0,0317 CCME 0,095 MECCO</td>
<td>0,005</td>
</tr>
</tbody>
</table>

Sections 2.1.12 et 4.1.12 Hydrocarbures aromatiques polycycliques (HAP)
<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>50-32-8</td>
<td>HAP ou ABN</td>
<td>0,015 CCME 0,01* 0,01 MECCO</td>
<td>0,01</td>
<td>0,0319 CCME 0,05 MECCO 0,005</td>
</tr>
<tr>
<td>Benzo(b)fluoranthane</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>205-99-2</td>
<td>HAP ou ABN</td>
<td>0,1 MECCO</td>
<td>0,05</td>
<td>0,16 CCME b+j+k 0,3 MECCO 0,005</td>
</tr>
<tr>
<td>Benzo(k)fluoranthane</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>207-08-9</td>
<td>HAP ou ABN</td>
<td>0,1 MECCO</td>
<td>0,05</td>
<td>0,16 CCME b+j+k 0,05 MECCO 0,005</td>
</tr>
<tr>
<td>Benzo[ghi]pérlyène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>191-24-2</td>
<td>HAP ou ABN</td>
<td>0,2 MECCO</td>
<td>0,04</td>
<td>0,17 MECCO 0,01</td>
</tr>
<tr>
<td>Chrysène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>218-01-9</td>
<td>HAP ou ABN</td>
<td>0,1 MECCO</td>
<td>0,1</td>
<td>0,0571 CCME 0,18 MECCO 0,01</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracène</td>
<td>Organique</td>
<td>53-70-3</td>
<td>HAP ou ABN</td>
<td>0,2 MECCO</td>
<td>0,008</td>
<td>0,00622 CCME 0,06 MECCO</td>
</tr>
<tr>
<td>Fluoranthène</td>
<td>Organique</td>
<td>206-44-0</td>
<td>HAP ou ABN</td>
<td>0,04 CCME 0,04 MECCO</td>
<td>0,01</td>
<td>0,111 CCME 0,24 MECCO</td>
</tr>
<tr>
<td>Fluorène</td>
<td>Organique</td>
<td>86-73-7</td>
<td>HAP ou ABN</td>
<td>3 CCME 120 MECCO</td>
<td>0,1</td>
<td>0,0212 CCME 0,05 MECCO</td>
</tr>
<tr>
<td>Indéno(1,2,3-c,d)pyrène</td>
<td>Organique</td>
<td>193-39-5</td>
<td>HAP ou ABN</td>
<td>0,2 MECCO</td>
<td>0,05</td>
<td>2,7 CCME 0,11 MECCO</td>
</tr>
<tr>
<td>Méthylnapthalènes, 2- et 1-</td>
<td>Organique</td>
<td>91-57-6 90-12-0</td>
<td>HAP ou ABN</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,0202 CCME 0,05 MECCO</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Naphthalène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>91-20-3</td>
<td>HAP ou ABN</td>
<td>1,1 CCME 7 MECCO</td>
<td>0,2</td>
<td>0,0346 CCME 0,05 MECCO</td>
</tr>
<tr>
<td>Phénanthrène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>85-01-8</td>
<td>HAP ou ABN</td>
<td>0,4 CCME 0,1 MECCO</td>
<td>0,08</td>
<td>0,0419 CCME 0,19 MECCO</td>
</tr>
<tr>
<td>Pyrène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>129-00-0</td>
<td>HAP ou ABN</td>
<td>0,025 CCME 0,2 MECCO</td>
<td>0,02</td>
<td>0,053 CCME 0,1 MECCO</td>
</tr>
<tr>
<td>Quinoléine</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>91-22-5</td>
<td>HAP ou ABN</td>
<td>3,4 CCME</td>
<td>0,3</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Sections 2.1.13 et 4.1.13 Trihalométhanes (THM)

<p>| Dibromochlorométhane (Chlorodibromométhane) | Organique Composés aliphatiques halogénés Méthanes halogénés | 124-48-1 | THM ou COV | 2 MECCO | 2 | 0,05 MECCO | 0,05 |</p>
<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichlorobromométhane (Bromodichlorométhane)</td>
<td>Organique Composés aliphatiques halogénés Méthanes halogénés</td>
<td>75-27-4</td>
<td>THM ou COV</td>
<td>100 CCME 2 MECCO</td>
<td>1</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Tribromométhane (Bromoforme)</td>
<td>Organique Composés aliphatiques halogénés Méthanes halogénés</td>
<td>75-25-2</td>
<td>COV</td>
<td>100</td>
<td>2</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Trichlorométhane (Chloroforme)</td>
<td>Organique Composés aliphatiques halogénés Méthanes halogénés</td>
<td>67-66-3</td>
<td>COV</td>
<td>1,8 CCME 2 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Sections 2.1.14 et 4.1.14 Composés organiques volatils I (COV)

<table>
<thead>
<tr>
<th>Nom chimique</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acétone</td>
<td>Organique Composés organiques volatils</td>
<td>67-64-1</td>
<td>COV</td>
<td>30 MECCO</td>
<td>6</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Benzène</td>
<td>Organique Composés aromatiques monocycliques</td>
<td>71-43-2</td>
<td>COV</td>
<td>110 CCME 88* 0,5 MECCO</td>
<td>5</td>
<td>0,0068 CCME 0,02 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,2-</td>
<td>Organique</td>
<td>95-50-1</td>
<td>COV</td>
<td>0,7 CCME 0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorobenzène, 1,3-</td>
<td>Organique</td>
<td>541-73-1</td>
<td>COV</td>
<td>150 CCME 42* 0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorobenzène, 1,4-</td>
<td>Organique</td>
<td>106-46-7</td>
<td>COV</td>
<td>26 CCME 0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluorométhane</td>
<td>Organique</td>
<td>75-71-8</td>
<td>COV</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,05 MCCEO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés organiques volatils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloroéthane, 1,1-</td>
<td>Organique</td>
<td>75-34-3</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Éthanes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloroéthane, 1,2-</td>
<td>Organique</td>
<td>107-06-2</td>
<td>COV</td>
<td>5 CCME 0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Éthanes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Dichloroéthane, 1,1-</td>
<td>Organique</td>
<td>75-35-4</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Dichloroéthane, 1,2- (cis- + trans-)</td>
<td>Organique</td>
<td>156-59-2</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Dichlorométhane (chlorure de méthylène)</td>
<td>Organique</td>
<td>75-09-2</td>
<td>COV</td>
<td>50 CCME 5 MECCO</td>
<td>10</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Dichloropropane, 1,2-</td>
<td>Organique</td>
<td>78-87-5</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Dichloropropène, 1,3- (cis- + trans-)</td>
<td>Organique</td>
<td>542-75-6</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Éthylbenzène</td>
<td>Organique</td>
<td>100-41-4</td>
<td>COV</td>
<td>2,4 CCME 0,5 MECCO</td>
<td>2</td>
<td>0,018 CCME 0,05 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dibromure d'éthylène (dibromoéthane, 1,2-)</td>
<td>Organique</td>
<td>106-93-4</td>
<td>COV</td>
<td>0,2 MECCO</td>
<td>0,2</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Hexane, n-</td>
<td>Organique</td>
<td>110-54-3</td>
<td>COV</td>
<td>5 MECCO</td>
<td>5</td>
<td>0,49 CCME 0,05 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Méthyléthylcétone (MEK)</td>
<td>Organique</td>
<td>78-93-3</td>
<td>COV</td>
<td>20 MECCO</td>
<td>20</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Méthylisobutylcétone (MiBK)</td>
<td>Organique</td>
<td>108-10-1</td>
<td>COV</td>
<td>20 MECCO</td>
<td>20</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Méthyl tert-butyl éther (MTBE)</td>
<td>Organique</td>
<td>1634-04-4</td>
<td>COV</td>
<td>5000 CCME 340* 15 MECCO</td>
<td>10</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Monobromométhane (Bromométhane, Méthyl Bromure)</td>
<td>Organique</td>
<td>74-83-9</td>
<td>COV</td>
<td>0,89 MECCO</td>
<td>N/D</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Monochlorobenzène</td>
<td>Organique</td>
<td>108-90-7</td>
<td>COV</td>
<td>1,3 CCME 0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Monochlorométhane (chlorure de méthyle)</td>
<td>Organique</td>
<td>74-87-3</td>
<td>COV</td>
<td>S/V</td>
<td>N/D</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Méthanes halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrène</td>
<td>Organique</td>
<td>100-42-5</td>
<td>COV</td>
<td>72 CCME 0,5 MECCO</td>
<td>1</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tétrachlorooéthane, 1,1,1,2-</td>
<td>Organique</td>
<td>630-20-6</td>
<td>COV</td>
<td>1,1 MECCO</td>
<td>0,5</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés organiques volatils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tétrachlorooéthane, 1,1,2,2-</td>
<td>Organique</td>
<td>79-34-6</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Éthanes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tétrachloroéthène, 1,1,2,2- ((PCE, tétrachloroéthylène)</td>
<td>Organique</td>
<td>127-18-4</td>
<td>COV</td>
<td>110 CCME 0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Éthènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tétrachlorométhane (tétrachlorure de carbone)</td>
<td>Organique</td>
<td>56-23-5</td>
<td>COV</td>
<td>5 CCME 0,56* 0,2 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Méthanes halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Thiophène</td>
<td>Organique</td>
<td>110-02-1</td>
<td>COV</td>
<td>S/V</td>
<td>N/D</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés polyaromatiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrocarbures aromatiques polycycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluène</td>
<td>Organique</td>
<td>108-88-3</td>
<td>COV</td>
<td>2 CCME 0,8 MECCO</td>
<td>0,5</td>
<td>0,08 CCME 0,2 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorobenzène, 1,2,3-</td>
<td>Organique</td>
<td>87-61-6</td>
<td>ABN or COV</td>
<td>8</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorobenzène, 1,2,4-</td>
<td>Organique</td>
<td>120-82-1</td>
<td>ABN ou COV</td>
<td>5,4 CCME 0,5 MECCO</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorobenzène, 1,3,5-</td>
<td>Organique</td>
<td>108-70-3</td>
<td>ABN ou COV</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzènes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroéthane, 1,1,1-</td>
<td>Organique</td>
<td>71-55-6</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Éthanes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Trichloroéthane, 1,1,2-</td>
<td>Organique</td>
<td>79-00-5</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénéks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Méthanes halogénéks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Étethène chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroéthène, 1,1,2- (TCE, tétrachloroéthylène)</td>
<td>Organique</td>
<td>79-01-6</td>
<td>COV</td>
<td>21 CCME 0,5 MECCO</td>
<td>1</td>
<td>0,01 CCME 0,05 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénéks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Étethène chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluorométhane</td>
<td>Organique</td>
<td>75-69-4</td>
<td>COV</td>
<td>150 MECCO</td>
<td>1</td>
<td>0,05 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés organiques volatils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorure de vynile</td>
<td>Organique</td>
<td>75-01-4</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,02 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés organiques volatils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylènes</td>
<td>Organique</td>
<td>1330-20-7</td>
<td>COV</td>
<td>30 CCME 72 MECCO</td>
<td>5</td>
<td>2,4 CCME 0,05 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.1.15 et 4.1.15 Composés organiques volatils II : Benzène, Éthylbenzène, Toluène, Xylènes (BTEX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benène</td>
<td>Organique</td>
<td>71-43-2</td>
<td>COV</td>
<td>110 CCME 88* 0,5 MECCO</td>
<td>5</td>
<td>0,0068 CCME 0,02 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Éthylbenzène</td>
<td>Organique</td>
<td>100-41-4</td>
<td>COV</td>
<td>2,4 CCME 0,5 MECCO</td>
<td>2</td>
<td>0,018 CCME 0,05 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Toluène</td>
<td>Organique</td>
<td>108-88-3</td>
<td>COV</td>
<td>2 CCME 0,8 MECCO</td>
<td>0,5</td>
<td>0,08 CCME 0,2 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylènes</td>
<td>Organique</td>
<td>1330-20-7</td>
<td>COV</td>
<td>30 CCME 72 MECCO</td>
<td>5</td>
<td>2,4 CCME 0,05 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sections 2.1.16 et 4.1.16 Paramètres d’analyse des matières organiques individuelles
Sections 2.1.16.1 et 4.1.16.1 Diisopropanolamine

<table>
<thead>
<tr>
<th>Diisopropanolamine (DIPA)</th>
<th>Organique</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Autres composé organiques</td>
<td>110-97-4</td>
<td>APR</td>
<td>1600</td>
<td>10</td>
<td>180</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sections 2.1.16 et 4.1.16 Paramètres d’analyse des matières organiques individuelles
Sections 2.1.16.2 et 4.1.16.2 Fraction de carbone organique (FCO)

<table>
<thead>
<tr>
<th>Fraction de carbone organique</th>
<th>Organique</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Composés organiques volatils</td>
<td>N/D</td>
<td>APR</td>
<td>S/V MECCO</td>
<td>N/D</td>
<td>S/V MECCO</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>APR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sections 2.1.16 et 4.1.16 Paramètres d’analyse des matières organiques individuelles
Sections 2.1.16.3 et 4.1.16.3 Méthylmercure

<table>
<thead>
<tr>
<th>Méthylmercure</th>
<th>Organique</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Autres composé organiques</td>
<td>22967-92-6</td>
<td>APR</td>
<td>0,004 CCME 0,12 MECCO</td>
<td>0,0008</td>
<td>0,033 (tissue) CCME</td>
<td>0,006</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Nonylphénol et ses dérivés éthoxylés</td>
<td>Organique</td>
<td>84852-15-3</td>
<td>APR</td>
<td>0,7</td>
<td>0,1 NP</td>
<td>0,1 NPO group</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Nonylphénol et ses dérivés éthoxylés</td>
<td>84852-15-3</td>
<td>APR</td>
<td>0,7</td>
<td>0,1 NP</td>
<td>0,1 NPO group</td>
<td>1</td>
</tr>
<tr>
<td>Sections 2.1.16 et 4.1.16 Paramètres d’analyse des matières organiques individuelles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.1.16.4 et 4.1.16.4 Nonylphénol et ses dérivés éthoxylés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfolane (bondelane)</td>
<td>Composé de soufre organique</td>
<td>126-33-0</td>
<td>APR</td>
<td>500</td>
<td>100</td>
<td>0,8</td>
<td>0,2</td>
</tr>
<tr>
<td>Sections 2.1.16 et 4.1.16 Paramètres d’analyse des matières organiques individuelles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.1.16.5 et 4.1.16.5 Sulfolane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.2 et 4.2 Groupe des paramètres inorganiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections 2.2.1 et 4.2.1 Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>Métaux</td>
<td>7429-90-5</td>
<td>5</td>
<td>3</td>
<td>S/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimoine</td>
<td>Métaux</td>
<td>7440-36-0</td>
<td>1,5 MECCO</td>
<td>1</td>
<td>20 CCME 1 MECCO</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>Métaux</td>
<td>7440-38-2</td>
<td>5 CCME 13 MECCO</td>
<td>1</td>
<td>5,9 CCME 6 MECCO</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Baryum</td>
<td>Métaux</td>
<td>7440-39-3</td>
<td>610 MECCO</td>
<td>10</td>
<td>500 CCME 210 MECCO</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Béryllium</td>
<td>Métaux</td>
<td>7440-41-7</td>
<td>100 CCME 5,3* 0,5 MECCO</td>
<td>1</td>
<td>4 CCME 2,5 MECCO</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bore</td>
<td>Inorganique Métaux</td>
<td>7440-42-8</td>
<td>Métaux</td>
<td>1500 CCME 500* 1700 MECCO</td>
<td>50</td>
<td>36 MECCO</td>
<td>5</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Inorganique Métaux</td>
<td>7440-43-9</td>
<td>Métaux</td>
<td>0,017, 0,005 µg/L (10 mg/L hardness) CCME 0,5 MECCO</td>
<td>0,01</td>
<td>0,6 CCME 0,6 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Calcium</td>
<td>Inorganique Métaux</td>
<td>7789-78-8</td>
<td>Métaux</td>
<td>1 000 000</td>
<td>1000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chrome</td>
<td>Inorganique Métaux</td>
<td>7440-47-3</td>
<td>Métaux</td>
<td>11 MECCO</td>
<td>1</td>
<td>37,3 CCME 26 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Inorganique Métaux</td>
<td>7440-48-4</td>
<td>Métaux</td>
<td>50 CCME 3,8 MECCO</td>
<td>10</td>
<td>40 CCME 19 MECCO</td>
<td>2</td>
</tr>
<tr>
<td>Cuivre</td>
<td>Inorganique Métaux</td>
<td>7440-50-8</td>
<td>Métaux</td>
<td>2 CCME 5 MECCO</td>
<td>1</td>
<td>18,7 CCME 16 MECCO</td>
<td>5</td>
</tr>
<tr>
<td>Fer</td>
<td>Inorganique Métaux</td>
<td>7439-89-6</td>
<td>Métaux</td>
<td>300</td>
<td>60</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Plomb</td>
<td>Inorganique Métaux</td>
<td>7439-92-1</td>
<td>Métaux</td>
<td>1 CCME 1,9 MECCO</td>
<td>0,2</td>
<td>30,2 CCME 31 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Lithium</td>
<td>Inorganique Métaux</td>
<td>7439-93-2</td>
<td>Métaux</td>
<td>2500</td>
<td>20</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Magnésium</td>
<td>Inorganique Métaux</td>
<td>7439-95-4</td>
<td>Métaux</td>
<td>S/V</td>
<td>1000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Manganèse</td>
<td>Inorganique Métaux</td>
<td>7439-96-5</td>
<td>Métaux</td>
<td>200</td>
<td>20</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Molybdène</td>
<td>Inorganique Métaux</td>
<td>7439-98-7</td>
<td>Métaux</td>
<td>73 CCME 23 MECCO</td>
<td>1</td>
<td>5 CCME 2 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Nickel</td>
<td>Inorganique Métaux</td>
<td>7440-02-0</td>
<td>Métaux</td>
<td>25 CCME 14 MECCO</td>
<td>2</td>
<td>50 CCME 16 MECCO</td>
<td>2</td>
</tr>
<tr>
<td>Sélénium</td>
<td>Inorganique Métaux</td>
<td>7782-49-2</td>
<td>Métaux</td>
<td>1 CCME 5 MECCO</td>
<td>0,5</td>
<td>1 CCME 1,2 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Argent</td>
<td>Inorganique Métaux</td>
<td>7440-22-4</td>
<td>Métaux</td>
<td>0,1 CCME 0,3 MECCO</td>
<td>0,1</td>
<td>20 CCME 0,5 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Sodium</td>
<td>Inorganique Métaux et APR</td>
<td>7440-23-5</td>
<td>Métaux</td>
<td>490000 MECCO</td>
<td>500</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Thallium</td>
<td>Inorganique Métaux</td>
<td>7440-28-0</td>
<td>Métaux</td>
<td>0,8 CCME 0,5 MECCO</td>
<td>0,2</td>
<td>1 CCME 1 MECCO</td>
<td>0,4</td>
</tr>
<tr>
<td>Étain</td>
<td>Inorganique Métaux</td>
<td>7440-31-5</td>
<td>Métaux</td>
<td>S/V</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>Inorganique Métaux</td>
<td>7440-61-1</td>
<td>Métaux</td>
<td>10 CCME 8,9 MECCO</td>
<td>1</td>
<td>23 CCME 1,9 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Inorganique Métaux</td>
<td>7440-62-2</td>
<td>Métaux</td>
<td>100 CCME 3,9 MECCO</td>
<td>1</td>
<td>130 CCME 86 MECCO</td>
<td>5</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Zinc</td>
<td>Inorganique Métaux</td>
<td>7440-66-6</td>
<td>Métaux</td>
<td>30 CCME 10* 160 MECCO</td>
<td>5</td>
<td>123 CCME 120 MECCO</td>
<td>10</td>
</tr>
</tbody>
</table>

Sections 2.2 et 4.2 Groupes de paramètres inorganiques
Sections 2.2.2 et 4.2.2 Paramètres d’analyse des matières inorganiques individuelles (APR)

<table>
<thead>
<tr>
<th>Ammoniac (total)</th>
<th>Inorganique Composés d’azote inorganiques</th>
<th>N/D</th>
<th>APR</th>
<th>21</th>
<th>10</th>
<th>S/V</th>
<th>N/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniac (non ionisé)</td>
<td>Inorganique Composés d’azote inorganiques</td>
<td>7664-41-7</td>
<td>APR</td>
<td>19</td>
<td>10</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Bore SEC</td>
<td>Inorganique Métaux</td>
<td>NA</td>
<td>Métaux</td>
<td>2 CCME</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorure</td>
<td>Inorganique Humide</td>
<td>16877-00-6</td>
<td>APR</td>
<td>100 000 CCME 790 000 MECCO</td>
<td>5000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chrome trivalent (Cr(III))</td>
<td>Inorganique Métaux</td>
<td>16065-83-1</td>
<td>APR</td>
<td>Métaux</td>
<td>4,9</td>
<td>2</td>
<td>S/V</td>
</tr>
<tr>
<td>Chrome hexavalent (Cr(VI))</td>
<td>Inorganique Métaux</td>
<td>18540-29-9</td>
<td>APR</td>
<td>CCME 1 25 MECCO</td>
<td>1</td>
<td>0,4 CCME 0,66 MECCO</td>
<td>0,4</td>
</tr>
<tr>
<td>Couleur (vraie)</td>
<td>Inorganique Humide Physique</td>
<td>N/D</td>
<td>APR</td>
<td>Narratif</td>
<td>3000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Conductivité</td>
<td>Inorganique Humide Physique</td>
<td>N/D</td>
<td>APR</td>
<td>S/V</td>
<td>5 µS/cm</td>
<td>2 dS/m CCME 0,47 dS/m MECCO</td>
<td>0,1 dS/m</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>n° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cyanure</td>
<td>Inorganique Humide</td>
<td>57-12-5</td>
<td>APR</td>
<td>5 (CN libre) CCME 1° 5 MECCO</td>
<td>1</td>
<td>0,9 CCME 0,051 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Sursaturation de gaz dissous</td>
<td>Inorganique Physique</td>
<td>N/D</td>
<td>APR</td>
<td>8 ΔP mm Hg</td>
<td>8 ΔP mm Hg</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Oxygène dissous (OD)</td>
<td>Inorganique Physique</td>
<td>N/D</td>
<td>APR</td>
<td>5500</td>
<td>2000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Fluorure</td>
<td>Inorganique Humide</td>
<td>N/D</td>
<td>APR</td>
<td>120</td>
<td>50</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Mercure</td>
<td>Inorganique Métaux</td>
<td>7439-97-6</td>
<td>APR</td>
<td>0,016 CCME 0,1 MECCO</td>
<td>0,01</td>
<td>0,130 CCME 0,16 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Nitrate</td>
<td>Inorganique Composés d'azote inorganiques</td>
<td>84145-82-4 14797-55-8</td>
<td>APR</td>
<td>13 000</td>
<td>20</td>
<td>S/V</td>
<td>1</td>
</tr>
<tr>
<td>Nitrate + Nitrite</td>
<td>Inorganique Composés d'azote inorganiques</td>
<td>N/D</td>
<td>APR</td>
<td>100 000</td>
<td>20</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nitrite</td>
<td>Inorganique Composés d'azote inorganiques</td>
<td>14797-65-0</td>
<td>APR</td>
<td>60 NO2-N</td>
<td>20</td>
<td>S/V</td>
<td>1</td>
</tr>
<tr>
<td>Azote (total)</td>
<td>Inorganique Composés d'azote inorganiques</td>
<td>7727-37-9</td>
<td>APR</td>
<td>250 MECCO</td>
<td>50</td>
<td>S/V</td>
<td>10</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nutriments (TN et TP)</td>
<td>Inorganique</td>
<td>APR</td>
<td>Cadre d’orientation***</td>
<td>TN 50 TP 10</td>
<td>S/V</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td>Taille des particules</td>
<td>Inorganique</td>
<td>N/D</td>
<td>S/V</td>
<td>N/D</td>
<td>S/V</td>
<td>0,5 %</td>
<td></td>
</tr>
<tr>
<td>Phosphore</td>
<td>Inorganique</td>
<td>N/D</td>
<td>Cadre d’orientation***</td>
<td>10</td>
<td>S/V</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Inorganique</td>
<td>N/D</td>
<td>Eau douce : 6,5 à 9,0 Marine: 7,0 à 8,7 6,5 à 8,7*</td>
<td>na</td>
<td>S/V</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td>Composés chlorés réactifs</td>
<td>Inorganique</td>
<td>N/D</td>
<td>0,5</td>
<td>³†</td>
<td>S/V</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td>Salinité</td>
<td>Inorganique</td>
<td>N/D</td>
<td>36 %</td>
<td>S/V</td>
<td>N/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapport d’adsorption du sodium</td>
<td>Inorganique</td>
<td>N/D</td>
<td>NA</td>
<td>5 CCME 1 MECCO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrat de lit</td>
<td>Inorganique</td>
<td>N/D</td>
<td>10 % < 2 mm, 19 % < 3 mm, 25 % < 6,35 mm</td>
<td>S/V</td>
<td>N/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Inorganique Composés de souffre inorganiques</td>
<td>18785-72-3</td>
<td>APR</td>
<td>1 000 000</td>
<td>5 mg/L</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Soufre (élémentaire)</td>
<td>Inorganique Composés de souffre inorganiques</td>
<td>7704-34-9</td>
<td>APR</td>
<td>S/V</td>
<td>500</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Sédiments en suspension</td>
<td>Inorganique Physique Turbidité, clarté et solides en suspension Matières particulaires totales en suspension</td>
<td>N/D</td>
<td>APR</td>
<td>5 mg/L sur le fond</td>
<td>2 mg/L</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Turbidité</td>
<td>Inorganique Physique Turbidité, clarté et solides en suspension Matières particulaires totales</td>
<td>N/D</td>
<td>APR</td>
<td>1 NTU</td>
<td>0,5 NTU</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Matières dissoutes totales (salinité)</td>
<td>Inorganique Physique Turbidité, clarté et solides en suspension</td>
<td>N/D</td>
<td>APR</td>
<td>500 000</td>
<td>10 mg/L</td>
<td>S/V</td>
<td>N/D</td>
</tr>
</tbody>
</table>

Sections 2.3 et 4.3 Microbiologie

Sections 2.3.1 et 4.3.1 Coliformes

<p>| Coliformes fécaux (Escherichia coli) | Inorganique Biologique | N/D | Bacti | 100 par 100 mL | < 1 | S/V | N/D |</p>
<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes totaux</td>
<td>Inorganique Biologique</td>
<td>N/D</td>
<td>Bacti</td>
<td>1000 par 100 mL</td>
<td>< 1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
</tbody>
</table>

Sections 2.3 et 4.3 Microbiologie
Sections 2.3.2 et 4.3.2 Cyanobactéries

| Cyanobactéries (algues bleu-vert) | Inorganique Biologique | N/D | Bacti | Croissance rapide, algues bleu vert | 100 | S/V | N/D |

N° CAS = Numéro de registre CAS
N/D = Non disponible ou non applicable.
S/V = Aucune valeur indiqué pour cet étalon.
APR = autres paramètres réglementés (énumérés dans la section 2.1.16 ou 2.2.2)
‡Le SDL est supérieur au plus bas critère pour cette matrice
†Le résultat le plus élevé pour la F4 ou la F4G est comparé au SDL.
*Critère le plus bas du document d’orientation concernant les recommandations fédérales intérimaires pour la qualité de l’eau pour les sites contaminés fédéraux, Mai 2010, Tableau 1
**Critère de sol le plus bas obtenu provenant du Standard pancanadien relatif aux hydrocarbures pétroliers dans le sol, approuvé par le CCME, 30 avril et 1er mai 2001, Winnipeg. Tableau 1 révisé en janvier 2008
5.2 Exigences de déclaration

Afin que les données soient défendables sur le plan juridique, le certificat d’analyse fourni par le laboratoire doit être suffisamment détaillé pour assurer la traçabilité sur le site visé, et doit présenter les méthodes d’exécution de l’analyse et les anomalies notées, le cas échéant.

Les certificats ou les rapports d’analyse doivent inclure au moins les éléments suivants :

- Le site visé et les renseignements au sujet du client, y compris les identifiants de l’échantillon, l’emplacement, etc.

Repères de temps :	Date et heure d’échantillonnage (pour chaque échantillon, si fourni)
	Date d’extraction ou de digestion (pour chaque échantillon/essai) (au besoin)
	Date d’analyse (pour chaque échantillon/essai)
	Date du rapport
	Commentaire indiquant que ce rapport remplace les précédents rapports lorsque des rapports corrigés sont produits et que des différences sont notées.

Données à communiquer :	Température des échantillons à la réception, y compris lorsque les échantillons sont congelés
	Présence de sceaux de sécurité et mention indiquant s’ils sont intacts ou non
	Tout autre élément concernant l’intégrité de l’échantillon
	La chaîne de possession des échantillons soumis au laboratoire ou ayant fait l’objet de transbordement entre les laboratoires

CQ à communiquer :	Afin que la PQ puisse évaluer correctement la qualité des données analytiques, sauf indication contraire, tous les CQ associés doivent être rapportés de la façon suivante :
	Les analyses de duplicatas de laboratoire (y compris le % de récupération, la différence relative en pourcentage [DRP] ou la différence absolue pour chaque paramètre)
	Blancs de terrain/de transport (le cas échéant)
	Blancs de méthode
	Analyse des échantillons de contrôle de la qualité
	Analyses de la matrice enrichie (le cas échéant) (y compris le % de récupération)
	Les matériaux de référence (le cas échéant) (y compris le % de récupération)
	La récupération de substituts (le cas échéant) (y compris le % de récupération)
	Les CQ à communiquer doivent noter les indicateurs de dépassement des CQ.
- Le site visé et les renseignements au sujet du client, y compris les identifiants de l’échantillon, l’emplacement, etc.

<table>
<thead>
<tr>
<th>Analyses à communiquer</th>
<th>Les données de l’analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On recommande de présenter les données dans les mêmes unités que celles prévues par la réglementation</td>
</tr>
<tr>
<td></td>
<td>Les données relatives aux sols/sédiments sont normalement exprimées en poids sec, sauf indication contraire</td>
</tr>
<tr>
<td></td>
<td>Les seuils de déclaration des laboratoires (SDL)</td>
</tr>
<tr>
<td></td>
<td>Les unités</td>
</tr>
<tr>
<td></td>
<td>Les qualificatifs de données (interférence, poids secs, etc.)</td>
</tr>
<tr>
<td></td>
<td>Si demandé, l’incertitude analytique associée à chaque mesure</td>
</tr>
<tr>
<td></td>
<td>Le nom de la méthode d’analyse tel qu’indiqué dans le document d’accréditation, y compris la méthode de référence sur laquelle la méthode d’analyse est fondée</td>
</tr>
</tbody>
</table>

| Notes/commentaires | Signaler tout comportement inhabituel noté à n’importe quelle étape du processus d’analyse (p.ex., manque d’homogénéité de l’échantillon, espace de tête dans un échantillon de composé organique volatile (COV), etc.) |
| | Inclure tous les autres commentaires relatifs à l’application de la réglementation (p.ex., respect des critères de performances du CCME) |

| Analyses en sous-traitance | Les analyses effectuées dans des laboratoires tiers, y compris les laboratoires affiliés ou travaillant en réseau, doivent être indiquées |

5.3 Dilution de l’échantillon

Lorsque la concentration d’un ou plusieurs paramètres d’une analyse comprenant plusieurs composantes (ou l’analyte unique dans un essai à une seule composante) excède la concentration de l’étalon de référence respectif ou la limite supérieure de la plage d’étalonnage, la dilution de l’échantillon est requise afin de mieux quantifier le paramètre. Lorsque cela est nécessaire, le seuil de déclaration de laboratoire (SDL) rapporté pour chaque analyte cible doit être ajusté (augmenté) en proportion directe avec le facteur de dilution (FD).

Le facteur de dilution est déterminé comme suit :

$$ FD = \frac{Volume\ final\ de\ l'échantillon\ dilué\ (mL)}{Volume\ de\ l'aliquote\ (mL)} $$

Le SDL\textsubscript{d} (le SDL révisé pour l’échantillon dilué) est systématiquement déterminé comme suit :

$$ SDL_{d} = FD \times SDL $$

De manière minimale, le SDL\textsubscript{d} ne peut être inférieur au facteur de dilution multiplié par la limite de détection de la méthode (FD \times LDM). Certaines situations exigeant le signalement de la SDL\textsubscript{d} (en raison de la dilution) peuvent ne pas respecter les exigences relatives au seuil de déclaration du SDL. De telles augmentations de SDL sont acceptables, dans la mesure où tous les résultats des paramètres sont inférieurs à la recommandation réglementaire applicable. Chaque laboratoire doit expliquer en détail toutes les dilutions d’échantillons, et justifier de manière appropriée les données.
Note d’analyse : Lorsqu’il est nécessaire de procéder à une dilution en raison du dépassement de la plage d’étalonnage, la concentration post-dilution du paramètre le plus élevé rapporté ne doit pas être inférieure à 20 % de l’étalon de référence le plus élevé de la méthode. Cela permettra d’éviter les pertes de précision et d’exactitude et des seuils de déclaration inutilement élevés pour d’autres paramètres ne nécessitant pas de dilution.

Dans le cadre de balayages visant de multiples composants, il est également permis de présenter les résultats de l’échantillon non dilué pour les analytes se situant dans la plage d’étalonnage (lorsque l’examen montre que les données sont valides).

5.3.1 **Analyte non-cible élevé ou interférences dues à la matrice donnant des résultats de SDL au-dessus de l’étalon de référence**

En cas d’interférence de la matrice ou de présence de composés cibles/non-cibles élevés, la dilution de l’échantillon est nécessaire. La dilution peut donner lieu à des analytes cibles devant être rapportés au moyen de SDL ajustés (selon le calcul de la section 5.3) supérieurs à la RCQE pertinente.

Dans ces cas, les résultats sont présentés comme « inférieur à (<) » avec un SDL ajusté à la hausse correspondant au niveau d’interférence, ce qui peut entraîner un SDL au-dessus de la recommandation réglementaire.

Dans ces cas, la personne qualifiée doit examiner les analytes pour lesquels les SDL dépassent la recommandation réglementaire et établir si les composés sont des contaminants préoccupants ou non. Veuillez consulter le laboratoire lorsqu’il s’agit de contaminants préoccupants. Des efforts supplémentaires ou des essais spéciaux peuvent être nécessaires pour atteindre les SDL requis. Notez cependant que dans les cas d’échantillons très « sales », il peut être impossible de quantifier avec précision certains analytes conformément à la recommandation réglementaire.
6 EXIGENCES D’ASSURANCE ET DE CONTRÔLE DE LA QUALITÉ (AQ/CQ)

Cette section présente les exigences d’assurance et de contrôle de la qualité (AQ/CQ) propres à chaque méthode concernant le traitement, l’analyse et la présentation des données d’analyse des échantillons.

6.1 Accréditation

6.2 Validation de la méthode initiale

Toutes les méthodes d’analyse qui fournissent des données à l’appui d’une RCQE doivent être correctement validées et adaptées à l’objectif visé. Les données de validation doivent être disponibles pour examen en cas de demande d’inspection.

Dans le cas où la technique employée existe depuis un bon moment, des données continues de performance de la méthode peuvent être utilisées pour démontrer que la méthode est valide et adaptée à l’objectif visé. Les blancs de méthode, les duplicatas de laboratoires, les échantillons de contrôle de laboratoire et les matrices enrichies doivent respecter les critères de performance décrits dans les tableaux 6-1 à 6-16. Un minimum de 30 points de données pour chaque mesure est nécessaire. Les LDM et les données d’incertitude doivent être disponibles, actuelles et adaptées à l’objectif visé. Les LDM, conformément à la section 6.3, doivent être inférieures ou égales aux SDL du tableau 5.1.

De plus, des échantillons de vérification de la performance (VP) (le cas échéant) doivent démontrer le maintien continu d’une performance acceptable.

6.2.1 Démonstration initiale de précision, d’exactitude, de sélectivité et de spécificité acceptables

Cette section présente les éléments recommandés pour la validation initiale de la méthode. Les laboratoires peuvent utiliser d’autres procédures de validation à condition qu’ils puissent prouver de manière égale ou supérieure qu’une méthode est adaptée à l’objectif visé en ce qui a trait à la LDM, la précision, l’exactitude et la robustesse.

Volume 4: Méthodes D’analyse
Dans le cas des méthodes d’essai qui existent depuis un bon moment, l’évaluation statistique des données de contrôle de qualité à long terme constitue une meilleure mesure de la performance que les essais de validation initiale de la méthode (voir la section 6.2 à ce sujet).

Les paragraphes qui suivent présentent les éléments minimaux de validation initiale relativement à l’exactitude, la précision et la robustesse de la méthode.

Eau

Au moins deux séries de cinq aliquotes d’eau naturelle ou synthétique (ne contenant pas les analytes d’intérêt) sont enrichies avec les analytes d’intérêt dans des contenants d’échantillons couramment utilisés. Une série est enrichie à un niveau équivalent à environ 5 à 10 fois le SDL, et l’autre série à une valeur égale ou supérieure au point médian de la plage. Les échantillons sont transportés tout au long du processus d’analyse. Au moins deux blancs de méthode doivent également être transportés tout au long du processus.

Sol et sédiments

Au moins deux différents types de sols doivent être analysés. Si possible, cela devrait inclure une matrice d’argile et une matrice organique (contenant plus de 3 % de carbone organique total [> 3 % COT]). Des échantillons composites bien homogénéisés sont préparés et au moins cinq aliquotes de chaque type de sol sont enrichies avec tous les analytes d’intérêt à environ 5 à 10 fois le SDL et à une valeur égale ou supérieure au milieu de la plage (20 échantillons au total). Si des matériaux de référence appropriés sont disponibles, ils sont généralement utilisés au lieu des échantillons enrichis aux fins de validation. Les échantillons sont transportés tout au long du processus d’analyse. Au moins deux blancs de méthode doivent également être transportés tout au long du processus.

Critères d’analyse et d’acceptabilité

Si possible, les analyses devraient être partagées entre deux ou plusieurs analystes, afin de démontrer la robustesse acceptable de la méthode.

La DRP des échantillons répétés et de la récupération de la matrice enrichie est calculée. (La conductivité et le pH n’ont pas besoin de matrice enrichie). La DRP et les récupérations (de chaque analyste si disponible) doivent respecter les limites spécifiées dans les tableaux 6-1 à 6-16, le cas échéant. Si la concentration naturelle de certains analytes est supérieure à la concentration de la matrice enrichie pour certains paramètres, les limites de la matrice enrichies ne s’appliquent pas. Si des matériaux de référence certifiés (MRC) sont utilisés, les limites d’acceptabilité associées aux CRM publiées ou bien les limites des tableaux 6-1 à 6-16 doivent être respectées (autour des valeurs certifiées des CRM), selon la plus élevée. Dans le cas des méthodes empiriques, la valeur certifiée des CRM doit être appropriée pour la méthode afin d’être applicable.

6.3 Évaluation initiale des limites de détection de la méthode

Les limites de détection de la méthode (LDM) doivent être établies pour chaque paramètre réglementé analysé (à l’exception du pH ou d’autres paramètres où la LDM n’est pas pertinente). Si plus d’un instrument est utilisé pour un essai, la LDM doit être établie pour chaque
instrument, ou doit être évaluée d’une manière qui tient compte de tous les instruments utilisés pour l’essai.

Dans le cas des méthodes d’essai de routine, les LDM sont révisées au moins tous les deux ans ou lorsque des changements importants sont apportés à la méthode ou aux instruments.

La LDM doit être inférieure ou égale au seuil de déclaration de laboratoire (SDL) pour chaque paramètre. Lorsque plusieurs instruments sont utilisés pour effectuer une analyse, le SDL doit être égal ou supérieur à l’un instrument individuel le plus élevé.

L’étalon minimal pour l’évaluation initiale de la LDM est décrit ci-dessous. Des variantes de cette procédure ont été largement utilisées depuis de nombreuses années dans le milieu des laboratoires de l’environnement. Cependant, il est reconnu que la LDM obtenue à partir de ce protocole est généralement inférieure à ce qui peut être réalisé quotidiennement sur des échantillons de routine, principalement parce qu’ils ne tiennent pas compte des biais positifs dans les blancs de méthode, ou des variations quotidiennes dans la performance des instruments et des méthodes d’essai, sans compter qu’ils ne tiennent pas suffisamment compte des faux négatifs.

En 2007, le Federal Advisory Committee on Detection and Quantitation Approaches and Uses in Clean Water Act Programs de l'US EPA a produit un rapport présentant une approche sensiblement différente et plus défendable pour établir la LDM et la LD. Le protocole détaillé se trouve à l’annexe D du document. Il est prévu qu’un nouveau protocole fondé sur ce rapport remplacera éventuellement les actuels protocoles de l’US EPA sur la LDM. Lien vers le rapport :

Les éléments clés de ce protocole indiquent qu’une LDM possédant un niveau de confiance de 99 % est calculée en s’appuyant sur des évaluations d’écarts-types provenant de blancs de méthode enrichis de faible niveau (échantillons de contrôle de laboratoire) au lieu d’utiliser un seul lot de LDM d’échantillons enrichis. L’utilisation de données provenant d’un grand nombre de séries fournit une estimation plus réaliste des capacités de détection de la méthode dans des conditions de routine.

La norme minimale pour la détermination des LDM est la procédure décrite ci-dessous, établie par le ministère de l’Environnement de l’Ontario. Les technologies alternatives d’évaluation des LDM, comme celles décrites plus haut, donnent généralement des estimations de LDM plus élevées que cette procédure.

1. Préparation d’un échantillon [en général de l’eau réactive ou du sol propre] enrichi à un niveau de 1 à 10 fois supérieur à la LDM prévue pour les analytes d’intérêt. Si la LDM résultante ne se situe pas dans cette plage, la détermination doit être répétée jusqu’à ce que la concentration de la LDM calculée atteigne de 1 à 10 fois la concentration enrichie.

2. Utilisation d’au moins huit aliquotes de l’échantillon qui devront franchir toutes les étapes de la méthode d’analyse. Si une mesure à blanc est nécessaire pour calculer le niveau d’analyte mesuré, une mesure à blanc distincte doit être obtenue pour chaque aliquote analysée.

4. Calculer l’écart-type classique [S1] des mesures répétées de la manière suivante :
\[S_1 = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \]

où : \(x_i \) = les résultats d’analyse des unités rapportées dans la méthode finale pour exprimer les aliquotes répétés \(n \) \([i = 1 \text{ à } n]\)

\(\bar{x} \) = moyenne des mesures répétées « \(n \) »

Les valeurs aberrantes identifiées à l’aide du test de Grubbs ou du test Q de Dixon (niveau de confiance de 95 %, test bilatéral) peuvent être supprimées, mais au moins sept points de données doivent demeurer.

Une autre option consiste à utiliser des données d’analyse prédéterminées d’échantillons répétés provenant d’une même série d’analyse et de calculer l’écart type \((S_2) \) des mesures répétées de la manière suivante :

\[S_2 = \sqrt{\frac{\sum_{i=1}^{n} (x_1 - x_2)^2}{2n}} \]

où : \(x_1, x_2 \) = les deux résultats répétés pour chacune des paires répétées de \(n \)

(minimum \(n = 40 \))

5. Calculer la LDM de la manière suivante :

\[MDL = t_{(n-1, \alpha=0.01)} S \]

où :

\(t_{(n-1, \alpha=0.01)} \) = la distribution \(t \) de Student correspondant à un niveau de confiance de 99 % compte tenu des degrés de liberté de \(n-1 \)

\(\alpha = \) traditionnellement appelé niveau de signification du test, et considéré comme une mesure de la probabilité maximale d’une erreur de type I pour toutes les distributions compatibles avec l’hypothèse nulle

\(S = \) écart-type tel que déterminé ci-dessus

Tableau des valeurs \(t \) de Student à un niveau de confiance de 99 pour cent (test unilatéral)

<table>
<thead>
<tr>
<th>Nombre d'échantillons répétés</th>
<th>Degré de liberté (n-1)</th>
<th>(t) (n-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>3,143</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2,998</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>2,896</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>2,821</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>2,764</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>2,602</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>2,528</td>
</tr>
</tbody>
</table>

Volume 4: Méthodes D’analyse
6.3.1 Détermination des LDM pour les paramètres additionnés

Dans le cas des paramètres additionnés comme les xylènes totaux, la LDM est la racine carrée de la somme des carrés des LDM des composantes individuelles. Par exemple, si la LDM pour l’o-xylène est 0,02 et que celle du m/p-xylène est 0,03, la LDM des xylènes totaux sera 0,04 :

\[
MDL_{\text{xylènes totaux}} = \sqrt{MDL_{o-xylène}^2 + MDL_{m/p-xylène}^2} = \sqrt{0.0004 + 0.0009} = 0.04
\]

Le même principe s’applique pour la détermination des SDL pour les paramètres additionnés (p.ex., les SDL rapportés doivent être calculés de cette manière, tout particulièrement lorsque les SDL sont augmentés en raison de dilution ou d’autres motifs).

6.3.2 Détermination des LDM ou des SDL pour les paramètres soustraits

En raison de considérations liées à l’incertitude des mesures, des circonstances particulières pour le traitement de la limite de détection s’appliquent lorsqu’un paramètre est déterminé par soustraction d’un résultat par rapport à un autre. Si le paramètre C3 est défini comme C1 - C2, la LDM et le SDL du paramètre C1 sont normalement utilisés pour C3.

Toutefois, lorsque l’ordre de grandeur des résultats de C2 se rapproche de C1 (p.ex., si C2 est ≥ 1/3 de C1), l’incertitude de C3 augmente considérablement. Lorsque l’incertitude d’un résultat d’essai est supérieure à l’ordre de grandeur du résultat lui-même, la confiance de détection devient incertaine. Par conséquent, dans ce cas, la limite de détection doit être portée à la valeur de l’incertitude du paramètre soustrait, comme suit :

\[
\text{LDM ou SDL pour } C_3 = \sqrt{(U_{C1})^2 + (U_{C2})^2}
\]

où :

- \(U_{C1}\) = l’estimation par le laboratoire de l’incertitude de mesure (IM) de C1 à un niveau de confiance de 95 %.
- \(U_{C2}\) = l’estimation par le laboratoire de l’incertitude de mesure (IM) de C2 à un niveau de confiance de 95 %.

6.3.3 Calcul de l’équivalence toxique de la LDM

Les concentrations des dix-sept isomères de dioxine et de furane les plus toxiques sont utilisées pour calculer un facteur d’équivalence toxique (FET). Le même principe que celui décrit à la section 6.3.1 est utilisé, sauf que la LDM est multipliée par le FET puis mise au carré. Le FET de la LDM est la racine carrée de la somme des carrés des LDM individuelles multipliée par les valeurs de FET. Un exemple est donné dans le tableau suivant. Ce protocole est également
Exemple : Calcul d’équivalence toxique de la LDM

<table>
<thead>
<tr>
<th>CONGENÈRE</th>
<th>I-FET*</th>
<th>LDM**</th>
<th>LDM x FET</th>
<th>(LDM x FET)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2378 TCDF</td>
<td>0,1</td>
<td>8,9</td>
<td>0,89</td>
<td>0,7921</td>
</tr>
<tr>
<td>12378PCDF</td>
<td>0,03</td>
<td>9,3</td>
<td>0,279</td>
<td>0,077841</td>
</tr>
<tr>
<td>23478PCDF</td>
<td>0,03</td>
<td>7,8</td>
<td>0,234</td>
<td>0,054756</td>
</tr>
<tr>
<td>123478 HxCDF</td>
<td>0,1</td>
<td>8,5</td>
<td>0,85</td>
<td>0,7225</td>
</tr>
<tr>
<td>123678 HxCDF</td>
<td>0,1</td>
<td>7,2</td>
<td>0,72</td>
<td>0,5184</td>
</tr>
<tr>
<td>234678 HxCDF</td>
<td>0,1</td>
<td>8,6</td>
<td>0,86</td>
<td>0,7396</td>
</tr>
<tr>
<td>123789 HxCDF</td>
<td>0,1</td>
<td>8,6</td>
<td>0,86</td>
<td>0,7396</td>
</tr>
<tr>
<td>1234678 HxCDF</td>
<td>0,01</td>
<td>12</td>
<td>0,12</td>
<td>0,0144</td>
</tr>
<tr>
<td>1234789 HxCDF</td>
<td>0,01</td>
<td>8,4</td>
<td>0,084</td>
<td>0,007056</td>
</tr>
<tr>
<td>OCDF</td>
<td>0,0003</td>
<td>15</td>
<td>0,0045</td>
<td>0,00002025</td>
</tr>
</tbody>
</table>

2378 TCDD	1	1,8	1,8	3,24
12378 DDPC	1	5,7	5,7	32,49
123478 HxCDD	0,1	3,7	0,37	0,1369
123678 HxCDD	0,1	6,2	0,62	0,3844
123789 HxCDD	0,1	23	2,3	5,29
1234678 HDDPC	0,01	9,5	0,095	0,009025
OCDD	0,0003	46	0,0138	0,00019044

Somme des carrés 45,22
LDM = Racine carrée de la somme des carrés 6,72

La LDM pour chacun de ces dix-sept « congénères toxiques » est déterminée à partir de huit échantillons enrichis. L’écart-type de la moyenne est multiplié par la valeur t de Student (3 lorsque huit échantillons sont analysés). La LDM pour chacun des dix-sept congénères est multipliée par son FET pour convertir sa valeur en équivalents de 2,3,7,8-TCDD.

Ces valeurs sont ensuite mises au carré et additionnées. La racine carrée de la somme des carrés est la valeur LDM pour la quantité d’équivalent toxique (QET) du 2,3,7,8-TCDD.

*I-TEF = Facteur d’équivalent toxique international

**LMD = Limite de détection de la méthode pour chaque congénère individuel.

6.4 Incertitude relative à la mesure

L’incertitude relative à la mesure doit être estimée et documentée. Il existe plusieurs lignes directrices pour l’estimation de l’incertitude relative à la mesure, y compris celles publiées par le MECCO, l’Organisation internationale de normalisation (ISO) et EURACHEM/Coopération sur la traçabilité internationale en chimie analytique (CITAC). Les organismes d’accréditation comme la CALA et SCC ont également publié des politiques sur l’incertitude relative à la mesure. Toutes les sources d’incertitude doivent être évaluées, mais
uniquement celles excédant de plus d’un tiers la plus grande source doivent être incluses dans l’estimation de l’incertitude combinée. Lorsque les données de performance de la méthode sont utilisées pour estimer l’incertitude, les études doivent s’assurer de varier le nombre et la plage des effets, les concentrations et les matrices afin que les diverses conditions rencontrées lors de l’utilisation normale de la méthode soient bien représentées.

L’incertitude relative à la mesure doit être estimée pour tous les analytes et exprimée sous forme d’incertitude élargie (U) à un niveau de confiance de 95 % (k = 2).

Mesurande : La quantité spécifique faisant l’objet de la mesure, comme la concentration d’un analyte.

Incertitude : Paramètre non négatif associé au résultat d’une mesure qui caractérise la dispersion des valeurs pouvant être raisonnablement attribuées au mesurande.

Composante d’incertitude : L’incertitude d’un résultat peut provenir de nombreuses sources possibles. Chacune des contributions à l’incertitude constitue une composante de l’incertitude.

Incertitude type : Les composantes de l’incertitude sont évaluées à l’aide de la méthode appropriée, et chacune d’elles est exprimée en écart type et est considérée comme une incertitude type.

Incertitude type combinée : Les composantes de l’incertitude type sont combinées pour produire une valeur globale d’incertitude désignée sous le nom d’incertitude type combinée. Il s’agit d’un écart type estimé égal à la racine carrée positive de la somme des variances de l’ensemble des composantes de l’incertitude.

\[\mu_c = \sqrt{\sum \mu_i^2} \]

où : \(\mu_c \) = l’incertitude combinée du résultat
\(\mu_i \) = l’incertitude de la composante individuelle

Incertitude étendue : L’incertitude étendue (U) est obtenue en multipliant l’incertitude type combinée par un facteur d’élargissement « k » pour fournir un intervalle dans lequel la valeur de la mesurande est présumée mentir à un niveau de confiance donné (p.ex. 95 %).

\[U = \mu_c \times k \]

où : \(\mu_c \) = l’incertitude combinée du résultat
\(k = 2 \) (pour un niveau de confiance à 95 %)

6.5 Réévaluation périodique de la performance

La performance de l’ensemble des méthodes d’essai de routine accréditées devrait être réévalué au moins tous les deux ans, ou lorsque des changements importants sont apportés aux méthodes ou aux instruments d’essai. La revalidation devrait inclure de manière minimale une réévaluation des LDM, de la précision, de l’exactitude et de la robustesse pour assurer la fiabilité des données par rapport à l’incertitude de la méthode d’essai.

La procédure de revalidation privilégiée pour les méthodes d’essais non modifiées consiste à évaluer statistiquement l’ensemble des données de CQ générées par une méthode au cours...
d’une période récente (p.ex., de 6 mois à 2 ans). S’il n’est pas possible d’examiner toutes les données de CQ au cours de la période d’évaluation, au moins 30 points de données récentes devraient être évalués.

La LDM peut être déterminée à l’aide de données à long terme de blancs de méthode ou d’ECL, le cas échéant, ou peut être estimée de nouveau au moyen de l’approche décrite dans la section 6.3. Si l’approche décrite dans la section 6.3 est utilisée, des données récentes de blanc de méthode devraient malgré tout être évaluées pour s’assurer que des résultats faussement positifs ne se produisent pas à un taux plus élevé que prévu.

Des évaluations statistiques de blancs de méthodes, de duplicatas de laboratoire, d’échantillons de contrôle de laboratoire et de matrices enrichies doivent démontrer que la méthode d’essai du laboratoire respecte les critères de performance décrits dans les tableaux 6-1 à 6-16.

6.6 Échantillons de contrôle de la qualité

Les échantillons de contrôle de qualité (CQ) des laboratoires analysés de manière régulière comprennent les blancs de méthodes, les échantillons de contrôle de laboratoire, les duplicatas de laboratoire et les matrices enrichies. De plus, des substituts sont utilisés pour l’analyse des composés organiques. Les limites d’acceptation des échantillons de CQ servent de paramètres pour démontrer la qualité des données de laboratoire qui y sont associées. Les critères relatifs aux duplicatas d’échantillons, aux matrices enrichies et aux substituts dans les tableaux qui suivent sont réalisables pour la plupart des échantillons environnementaux homogènes. Ils ne sont pas toujours réalisables en présence d’échantillons non homogènes ou de matrices très complexes.

Note : Tous les échantillons de CQ applicables mentionnés dans les tableaux ci-dessous doivent être analysés lorsqu’un échantillon suffisant est disponible. Les essais portant sur des matières organiques extractibles non solubles dans l’eau nécessitent de multiples contenants qui ne peuvent être sous-échantillonnés. La PQ doit produire de multiples échantillons. En l’absence de plusieurs contenants, il sera impossible de fournir une matrice enrichie et un duplicata de laboratoire.

Le CQ des laboratoires peut se faire à l’aide de divers échantillons de CQ de terrain comme des échantillons de terrain à l’aveugle, des blancs de terrain, des blancs de lavage de l’équipement et des blancs de transport. En général les limites d’acceptation des CQ sur le terrain sont plus étendues que celles s’appliquant au CQ des laboratoires, en général de 1,5 à 2 fois les limites de CQ des laboratoires.

Outre ces échantillons de CQ, il existe d’autres exigences liées à la qualité des données qui s’appliquent à l’ensemble des méthodes d’analyse, notamment le nombre de solutions étalons, la fréquence et les critères d’acceptation de la courbe d’étalonnage, la fréquence et les critères d’acceptation de la vérification continue de l’étalonnage (VCE) et les critères d’ajustement de la chromatographie en phase gazeuse-spectrométrie de masse (GC-MS). Les critères d’acceptation spécifiés dans la méthode de référence pour ces divers éléments doivent être respectés. En cas d’écarts par rapport à la méthode de référence, ceux-ci doivent être documentés et appuyés par des motifs valables.

Blanc de transport : échantillon de méthanol utilisé comme agent de conservation, d’eau de qualité réactif ou de sol vierge transporté scellé vers et depuis le lieu
d’échantillonnage, puis conservé tout au long du processus d’échantillonnage et d’analyse, incluant toutes les étapes de préparation des échantillons. Il est recommandé qu’un blanc de transport soit soumis avec chaque lot de flacons de méthanol ou de bisulfate pré-pesés afin de vérifier qu’aucun COV n’a été introduit au cours du processus de préparation du flacon, dans les agents de conservation mis dans les flacons, ou au cours du processus de transport de l’échantillon, selon le cas. Cela permettra aussi de garantir que les flacons fournis par le fournisseur ne soient pas déjà contaminés aux COV.

Blanc de méthodes : échantillon d’eau de qualité réactif ou de sol vierge (si possible libre d’analytes d’intérêt) transporté tout au long du processus d’analyse, incluant toutes les étapes de préparation des échantillons.

Échantillon de contrôle de laboratoire (ECL) : échantillon d’eau de qualité réactif ou de sol vierge enrichi avec les analytes d’intérêt puis transporté tout au long du processus d’analyse, incluant toutes les étapes de préparation des échantillons. En général, les ECL constituent une seconde source d’étalonnage, et possèdent une concentration proche du point médian de la plage d’étalonnage.

\[
\text{Écupération d’ELC} (\%) = \frac{(\text{concentration mesurée})}{(\text{concentration nominale})} \times 100 \%
\]

Matrice enrichie : seconde aliquote d’un échantillon de sol ou d’eau à laquelle on a ajouté divers analytes visés par l’analyse ou, le cas échéant, des analytes représentatifs, et transporté tout au long du processus d’analyse, incluant toutes les étapes de préparation des échantillons. Veuillez noter que dans le cas des analyses de sol où le prélèvement n’est pas destiné à récupérer la totalité de l’analyte naturel (chlorure, cyanure, bore SEC), l’additif est ajouté après le prélèvement. En général, la matrice enrichie constitue une seconde source d’étalonnage et possède une concentration proche du point médian de la plage d’étalonnage. Des matériaux de référence peuvent être utilisés à la place de matrices enrichies lorsque cela est approprié dans la mesure où la matrice est similaire aux échantillons et que les matériaux de référence contiennent tous les analytes de l’essai.

\[
\text{Récupération de la matrice enrichie} (\%) = \frac{([\text{échantillon enrichi}] - [\text{échantillon non enrichi}])}{(\text{additif})} \times 100 \%
\]

Les matrices enrichies étant également touchées par l’hétérogénéité de l’échantillon, les commentaires formulés à cet égard au sujet des duplicatas de laboratoire peuvent s’appliquer.

Duplicatas de laboratoire : seconde aliquote d’un échantillon de sol ou d’eau prélevée du contenant de l’échantillon en tant qu’échantillon original et transporté tout au long du processus d’analyse, incluant toutes les étapes de préparation des échantillons. Veuillez noter que puisque la plupart des essais sur des échantillons d’eau de composés organiques extractibles consomment la totalité de l’échantillon, les duplicatas de composés organiques extractibles sont en fait des duplicatas de terrain et peuvent être analysés uniquement en fournissant un nombre suffisant de bouteilles d’échantillons supplémentaires au laboratoire.

\[
\text{Duplicata de DRP} \% = \frac{([\text{échantillon}] - [\text{duplicata d’échantillon}])}{([\text{échantillon}] + [\text{duplicata d’échantillon}])/2} \times 100 \%
\]

Pour les analyses de composés organiques, les sols sont analysés tels que reçus. De ce fait, les duplicatas d’échantillons servent avant tout à mesurer l’homogénéité des échantillons. Lorsque les
Les échantillons sont visiblement non homogènes, et que les critères d’acceptation sont dépassés, la répétition de l’analyse n’est pas forcément nécessaire. Les données peuvent être notées avec la mention « dépassements dus à l’hétérogénéité des échantillons ».

Dans le cas des échantillons d’eau nécessitant une analyse organique, les critères figurant dans les tableaux qui suivent sont généralement réalisables en présence d’échantillons homogènes. Puisque les analyses d’échantillons d’eau pour les composés organiques extractibles insolubles dans l’eau sont effectuées au moyen de la procédure dite de la « bouteille entière », les duplicatas de laboratoire sont dans les faits des duplicatas de terrain susceptibles d’être affectés par la variabilité analytique et d’échantillonnage. Aucune action n’est requise si les critères figurant dans les tableaux ci-dessous ne sont pas respectés. Les données peuvent être notées avec la mention « duplicata de terrain ».

Pour la plupart des essais de composés inorganiques, les échantillons de sol et d’eau sont homogénéisés et des sous-échantillons sont extraits du contenant original pour être analysés, de sorte que les stipulations mentionnées ci-dessus ne s’appliquent pas.

Substituts : les substituts sont utilisés lors d’essais sur des composés organiques. Tous les échantillons sont enrichis avec des composés (généralement des analogues deutérées) représentatifs des analytes faisant l’objet de l’analyse, mais qui sont absents des échantillons environnementaux. Les substituts sont injectés dans l’échantillon avant les étapes de préparation de l’échantillon et transportés tout au long du processus d’analyse.

\[
\text{Récupération du substitut (\%)} = \frac{\text{concentration mesurée}}{\text{concentration théorique}} \times 100 \%
\]

Étalons internes : les étalons internes sont utilisés pour de nombreux essais de composés organiques (p.ex., ABN, COV). Une quantité connue de composé(s) (non présent(s) dans les échantillons, mais presque identique au comportement chimique du composé d’intérêt) est ajoutée à chaque échantillon (y compris tous les échantillons de CQ) avant l’analyse pour être quantifiée en comparant le taux de réponse de l’ion du paramètre d’essai par rapport à un échantillon interne.

Vérification continue de l’étalonnage (VCE) : la VCE est analysée au début d’une séquence, chaque fois qu’un étalonnage initial n’est pas effectué. Il est également recommandé de procéder à une VCE à tous les 20 échantillons, et à la fin de la séquence analytique (encadrement de la VCE), en particulier pour les méthodes utilisant la technique d’étalonnage externe.

La VCE sert à confirmer que l’instrument offrait un étalonnage acceptable tout au long de la période d’analyse des échantillons (autrement dit, à vérifier que l’étalonnage initial s’appliquait bien à l’ensemble des échantillons analysés). En général, l’échec de la VCE indique que l’étalonnage initial n’est plus valide et qu’il doit être corrigé, et que les échantillons associés à la séquence d’analyse doivent être analysés de nouveau.

Limites d’acceptation et qualificatifs : les plages d’acceptation préétablies présentées dans les tableaux ci-dessous correspondent aux méthodes de référence décrites dans la section 3 du présent document.

Qualificatifs des analyses multi-éléments : plus le nombre d’analytes inclus dans une analyse augmente, plus le risque de dépassements aléatoires de la limite s’accroît lui aussi, par opposition à un problème réel lié à la méthode. Ainsi, lorsque des analyses multi-éléments sont effectuées, il
est permis que jusqu’à 10 % des analytes d’ECL et de matrice enrichie (arrondis vers le bas) puissent dépasser les valeurs limites indiquées sans toutefois dépasser une valeur absolue maximale de 10 %. Par exemple, dans le cas d’une analyse d’hydrocarbure aromatique polycyclique (HAP) comprenant dix-sept analytes possédant des limites d’acceptation de la matrice enrichie s’échelonnant de 50 % à 140 %, 10 % ou un analyte peut avoir une récupération se situant à l’extérieur de la plage de 50 % à 140 % pour un écart maximal de valeur absolue de 10 %, c’est-à-dire une récupération de 40 % à 150 %. Les problèmes récurrents non aléatoires liés à des paramètres spécifiques doivent être résolus, et seront mis en évidence au moyen des évaluations continues de revalidation.

Qualificatifs des duplicatas: dans le cas des duplicatas, lorsque le résultat mesuré s’approche du SDL, l’incertitude associée à la DRP augmente considérablement. Pour tenir compte de ce fait, les critères d’acceptation des duplicatas sont soit les limites d’acceptation de la DRP présentées dans les tableaux ou doivent se situer à l’intérieur de 2 x SDL (pour les données de bas niveau). Par exemple, si le SDL est 10, des duplicatas de 15 et 30 seraient acceptables (différence de 15, acceptation de 2 x SDL = 20). Notez que la DPR des duplicatas dans cet exemple est 67 %.

Qualificatifs des matrices enrichies : dans le cas des matrices enrichies, plus la concentration des analytes naturels augmente et plus l’incertitude du taux de récupération de la matrice enrichie augmente elle aussi. (Il est impossible de quantifier précisément une petite différence entre deux nombres de grandes tailles). Par conséquent, les limites d’acceptation de la matrice enrichie s’appliquent uniquement lorsque la concentration de la matrice enrichie est supérieure ou égale à la concentration de l’analyte naturel.

Paramètres calculés : dans le cas des paramètres calculés, les limites d’acceptation doivent refléter l’incertitude (μ_i) pour chaque mesure (voir la Section 6.3.2). Cela est particulièrement important pour les paramètres calculés par différence comme la $F1 - BTEX$.

Par exemple, dans un échantillon avec une concentration BTEX totale de 10 mg/L et une concentration F1 de 11 mg/L, possédant chacun une μ_i de 20 % ou environ 2 mg/L, l’μ_i du résultat rapporté de la $F1 - BTEX$ est de 1 mg/L ± 2,8, soit une composante d’incertitude de 280 % :

$$\mu_{F1 - BTEX} = \sqrt{2^2 + 2^2} = 2.8 = 280 \%.$$

Dans cet exemple, le seuil de détection pour le résultat rapporté de la $F1 - BTEX$ devrait être élevé à 2,8 mg/L (tel que décrit dans la section 6.3.2) puisque le résultat soustrait de 1 mg/L est hautement incertain. De plus, dans cet exemple, les limites d’acceptation de routine du CQ pour le BTEX et la F1 ne peuvent évidemment pas s’appliquer à la $F1 - BTEX$. L’impact est bien moindre pour les paramètres additifs. Ainsi, dans le cas des paramètres calculés par soustraction, les limites d’acceptation du CQ s’appliquent uniquement aux composantes individuelles.
Tableau 6-1: Critères de performance – Composés organiques extractibles en milieu acide/basique/neutre (ABN), Chlorophénols (CP), Perfluorooctanesulfonate (PFOS), Hydrocarbures aromatiques polycycliques (HAP)

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Élaboration de la contamination en laboratoire | Évaluation de la contamination en laboratoire | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Propre à la matrice (p.ex., eau, sol)
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte
• Le pourcentage de récupération d’ECL devrait se situer entre 50 % et 140 % pour tous les composés, mais entre 30 % et 130 % pour des composés difficiles comme le 3,3 -dichlorobenzidine, le 2,4-diméthylphénol et le DNP | OUI : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si nécessaire. Voir la section 6.6. matrice enrichie. Si non ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Matrice enrichie (ou matériau de référence selon la section 6.3) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte ou similaire
• Le pourcentage de récupération devrait se situer entre 50 % et 140 % pour tous les composés, mais entre 30 % et 130 % pour des composés difficiles comme le 3,3 -dichlorobenzidine, le 2,4-diméthylphénol et le DNP | OUI : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si nécessaire. Voir la section 6.6. matrice enrichie. Si non ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤30 % pour l’eau et de ≤50 % pour les solides | OUI : Lorsque la DPR est conforme aux spécifications de la méthode – aucune action n’est requise. Si la DPR est défaillante, la répétition de l’analyse peut être requise pour les sols, mais aucune action n’est requise pour l’eau, voir 6.6 Duplicata de laboratoire. |
| Substituts | Exactitude de la matrice de l’échantillon | • Les substituts devraient représenter les analytes d’intérêt, et être représentatifs de la classe de composé des analytes cibles (p.ex., utiliser des HAP deutéérées lors de l’analyse d’HAP, utiliser des substituts phénoliques lors de l’analyse de pentachlorophénol)
• Le pourcentage de récupération dans le sol et l’eau devrait se situer entre 50 % et 140 % pour tous les composés. Les substituts sont facultatifs pour les méthodes de dilution isotopique. | OUI : Si la récupération se situe à l’extérieur des limites spécifiées, le laboratoire doit rapporter la récupération en incluant une note explicative au sujet du résultat. |
| Étalons internes (EI) | Exactitude du laboratoire, exactitude de la méthode pour la matrice de | • Minimum de 3 pendant le temps de rétention d’une série d’analyse par GC.
• Le nombre d’unités des échantillons doit se situer entre 50 % et 200 % du nombre d’unités du système de vérification continue de l’étalonnage (VCE) | NON : Lorsqu’un ou plusieurs étalons internes se situent à l’extérieur des limites, analyser de nouveau l’échantillon sauf en cas d’interférence évidente. |
<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l’échantillon</td>
<td>associé (Section 5.10 de SW 846, Méthode 8270D). Le temps de rétention des étalons internes devrait se situer à l’intérieur de ± 6 secondes du temps de rétention de la VCE associée.</td>
<td></td>
</tr>
</tbody>
</table>
| Quantification | N/D | • La quantification doit être fondée sur l’étalonnage interne
• Le laboratoire doit utiliser le facteur de réponse moyen ou la courbe de régression générée à partir de l’étalonnage initial pour la quantification de chaque analyte.
• Lors de l’utilisation de la méthode de GC-MS au moins 1 ion qualificatif (2 sont recommandés) respectant les proportions exigées doit être utilisé. Consulter SW-846 pour plus d’information à ce sujet. En présence de faibles concentrations, les proportions peuvent être augmentées, mais le qualificatif doit être présent pour permettre une identification positive. | NON |
<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Blanc de méthodes | Évaluation de la contamination en laboratoire | • Préparé avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Propre à la matrice (p.ex. eau, sol)
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte
• Le pourcentage de récupération d’ECL devrait se situer entre 70 à 130 % pour les eaux et 60 à 140 % pour les sols. | OUI : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent noter tous les analytes défaillants. |
| Matrice enrichie (ou matériau de référence selon la section 6.3) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte ou similaire
• Le pourcentage de récupération devrait se situer entre 50 % et 140 % pour le sol et l’eau | OUI : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si nécessaire. Voir la section 6.6 matrice enrichie. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤30 % pour l’eau et de ≤ 50 % pour les solides. | OUI : Lorsque la DPR est conforme aux spécifications de la méthode – aucune action n’est requise. Si la DPR est défaillante, la répétition de l’analyse peut être requise pour les sols, mais aucune action n’est requise pour les eaux, voir 6.6 Duplicata de laboratoire. |
| Substituts | Exactitude de la matrice de l’échantillon | • Les substituts devraient représenter les analytes d’intérêt, et être représentatifs de la classe de composé des analytes cibles
• Le pourcentage de récupération dans le sol devrait se situer entre 50 % et 140 % pour tous les composés. Les substituts sont facultatifs pour les méthodes de dilution isotopique. | OUI : Si la récupération se situe à l’extérieur des limites spécifiées, le laboratoire doit rapporter la récupération en incluant une note explicative au sujet du résultat. |
| Quantification | N/D | • Le laboratoire doit utiliser le facteur de réponse moyen ou la courbe de régression générée à partir de l’étalonnage initial pour la quantification de chaque analyte.
• Au moins 1 ion qualificatif respectant les proportions exigées doit être utilisé. Consulter SW-846 pour plus d’information. En présence de faibles concentrations, les proportions peuvent être augmentées, mais le qualificatif doit être présent pour une identification positive. | NON |
Tableau 6-3: Critères de performance – Diisopropanolamine; Glycols; Nonylphénol et ses éthoxylates; Pesticides organochlorés (PO); Composés d’organoétain; Pesticides et herbicides – Carbamates, Glyphosate, Herbicides du type phénoxy; Biphenyles polychlorés; Sulfolane

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| **Blanc de méthodes** | Évaluation de la contamination en laboratoire | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Propre à la matrice (p.ex., eau, sol)
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | **OUI** : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| **Échantillon de contrôle de laboratoire (ECL)** | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte
• Le pourcentage de récupération d’ECL devrait se situer entre 50 % et 140 % pour le sol et l’eau | **OUI** : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent noter tous les analytes défaillants. |
| **Matrice enrichie** (ou matériau de référence selon la section 6.3) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte ou similaire
• Le pourcentage de récupération devrait se situer entre 50 % et 140 % pour le sol et l’eau | **OUI** : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si nécessaire. Voir la section 6.6 matrice enrichie. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| **Duplicata de laboratoire** | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤30 % pour l’eau et de ≤ 50 % pour les solides. | **OUI** : Lorsque la DPR est conforme aux spécifications de la méthode – aucune action n’est requise. Si la DPR est défaillante, la répétition de l’analyse peut être requise pour les sols, mais aucune action n’est requise pour les eaux, voir 6.6 Duplicata de laboratoire |
| **Substituts** | Exactitude de la matrice de l’échantillon | • Les substituts devraient représenter les analytes d’intérêt, et être représentatifs de la classe de composé des analytes cibles
• Le pourcentage de récupération dans le sol et l’eau devrait se situer entre 50 % et 140 % pour l’eau et le sol. | **OUI** : Si la récupération se situe à l’extérieur des limites spécifiées, le laboratoire doit rapporter la récupération en incluant une note explicative au sujet du résultat. |

Volume 4: Méthodes D’analyse
Tableau 6-4: Critères de performance – Hydrocarbures pétroliers (HCP)

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| **Blanc de méthodes** | Évaluation de la contamination en laboratoire | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Propre à la matrice (p.ex., eau, sol)
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | **OUI** : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| **Échantillon de contrôle de laboratoire (ECL)** | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• L’étalon certifié est préparé à partir d’essence ou de diesel/huile à moteur le cas échéant.
• Le pourcentage de récupération d'ECL devrait se situer entre 60 % et 140 % pour l’eau et le sol | **OUI** : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent noter tous les analytes défaillants. |
| **Matrice enrichie** (ou matériel de référence selon la section 6.3) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• L’étalon certifié est préparé à partir d’essence ou de diesel/huile à moteur le cas échéant.
• Le pourcentage de récupération devrait se situer entre 60 % et 140 % pour l’eau et le sol | **OUI** : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si nécessaire. Voir la section 6.6 matrice enrichie. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| **Duplicata de laboratoire** | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤30 % pour l’eau et de ≤ 30 % pour les solides (basé sur l’analyse de 2 aliquotes de méthanol provenant d’un même échantillon conservé sur le terrain). < 40 % pour les solides si des aliquotes de sol séparées sont analysées. | **OUI** : Lorsque la DPR est conforme aux spécifications de la méthode – aucune action n’est requise. Si la DPR est défaillante, la répétition de l’analyse peut être requise pour les sols, mais aucune action n’est requise pour les eaux, voir 6.6 Duplicata de laboratoire. |
| **Substituts** | Exactitude de la matrice de l’échantillon | • Les substituts devraient représenter les analytes d’intérêt, et être représentatifs de la classe de composé des analytes cibles
• Le pourcentage de récupération devrait se situer entre 60 % et 140 % pour l’eau et le sol | **OUI** : Si la récupération se situe à l’extérieur des limites spécifiées, le laboratoire doit rapporter la récupération en incluant une note explicative au sujet du résultat. |
Tableau 6-5: Critères de performance –Dibenzo-p-dioxines polychlorés/Dibenzo-furanes

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Blanc de méthodes | Évaluation de la contamination en laboratoire | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Propre à la matrice (p.ex., eau, sol)
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | **OUI** : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte
• Le pourcentage de récupération d’ECL devrait se situer entre 70 et 140% ou selon la méthode1613B pour le sol et l’eau de l’US EPA | **OUI** : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent noter tous les analytes défaillants. |
| Matrice enrichie (ou matériau de référence selon la section 6.3) (facultatif) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte ou similaire
• Le pourcentage de récupération devrait se situer entre 50 % et 150 % pour le sol et l’eau | **OUI** : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si nécessaire. Voir la section 6.6 matrice enrichie. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤30 % pour l’eau et de ≤ 40 % pour les solides. | **OUI** : Lorsque la DPR est conforme aux spécifications de la méthode – aucune action n’est requise. Si la DPR est défaillante, la répétition de l’analyse peut être requise pour les sols, mais aucune action n’est requise pour l’eau, voir 6.6 Duplicata de laboratoire. |
| Récupération des étalons marqués | Exactitude de la matrice de l’échantillon | • Les substituts devraient représenter les analytes d’intérêt, et être représentatifs de la classe de composé des analytes cibles.
• Le pourcentage des récupérations devrait correspondre à la méthode1613B pour le sol et l’eau de l’US EPA | **OUI** : Si la récupération se situe à l’extérieur des limites spécifiées, le laboratoire doit rapporter la récupération en incluant une note explicative au sujet du résultat. |
Tableau 6-6 : Critères de performance – Composés organiques volatils (COV), Trihalométhanes (THM), BTEX

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Blancs de terrain et de transport | Évaluation de la contamination et de l’intégrité du flacon de méthanol | • Préparé avec chaque lot de flacons de méthanol pré-pesés.
 • Le blanc de transport est pesé de nouveau au laboratoire et comparé au poids d’origine pour déterminer toute perte de méthanol. Le blanc de terrain est analysé.
 • Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL). Note : l’acétone, le chlorure de méthyle, le toluène et l’hexane sont des artefacts de laboratoire courants. Si l’un ou l’autre d’entre eux est > que le SDL, le laboratoire doit se prononcer au sujet de l’impact sur la qualité des données. | OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Blanc de méthodes | Évaluation de la contamination en laboratoire | • Préparé avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
 • Propre à la matrice (p.ex., eau, sol)
 • Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL). Note : l’acétone, le chlorure de méthyle, le toluène et l’hexane sont des artefacts de laboratoire courants. Si l’un ou l’autre d’entre eux est > que le SDL, le laboratoire doit se prononcer au sujet de l’impact sur la qualité des données. | OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
 • Étalon provenant d’une source distincte
 • Le pourcentage de récupération d’ECL devrait se situer entre 50 et 140 % pour les composés gazeux à 20 °C* et les cétones, et entre 60 et 130 % pour tous les autres, sol et eau | OUI : Nouvelle préparation ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent noter tous les analytes défaillants. |
| Matrice enrichie (ou matériau de référence selon la section 6.3) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • Extrait avec chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
 • Étalon provenant d’une source distincte ou similaire
 • Le pourcentage de récupération devrait se situer entre 50 % et 140 % pour le sol et l’eau | OUI : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si nécessaire. Voir la section 6.6 matrice enrichie. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
 • La DPR devrait être de ≤30 % pour l’eau et de ≤ 50 % pour les solides. La DPR devrait être de ≤ 50 % pour les composés gazeux à 20 °C*. | OUI : Lorsque la DPR est conforme aux spécifications de la méthode – aucune action n’est requise. Si la DPR est défaillante, la répétition de l’analyse peut être requise, voir 6.6 Duplicata de laboratoire. |
<table>
<thead>
<tr>
<th>Paramètres d'AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d'exécution requises</th>
<th>Inclus dans le rapport ou le certificat d'analyse</th>
</tr>
</thead>
</table>
| Substituts | Exactitude de la matrice de l'échantillon | • Les substituts devraient représenter les analytes d'intérêt, et être représentatifs de la classe de composé des analytes cibles.
• Le pourcentage de récupération dans le sol et l'eau devrait se situer entre 50 % et 140 % pour le sol et l'eau | OUI : Si la récupération se situe à l'extérieur des limites spécifiées, le laboratoire doit rapporter la récupération en incluant une note explicative au sujet du résultat. |
| Étalons internes (EI) | Exactitude du laboratoire et exactitude de la méthode dans la matrice de l'échantillon | • Minimum de 2 ou 3 recommandé pendant le temps de rétention d'une série d'analyses par GC, lorsque le spectre complet des COV est l'objet de l'analyse. Un seul EI est requis pour le sous-ensemble des BTEX.
• Le nombre d'unités des échantillons doit se situer entre 50 % et 200 % du nombre d'unités du système de vérification continue de l'étalonnage (VCE) associé (Section 5.10 de SW 846, Méthode 8260B)
• Le temps de rétention des étalons internes devrait se situer à l'intérieur de ± 6 secondes du temps de rétention de la VCE associée. | NON : Lorsqu'un ou plusieurs étalons internes se situent à l'extérieur des limites, analyser de nouveau l'échantillon sauf en cas d'interférence évidente. |
| Quantification | N/D | • La quantification doit être fondée sur l'étalonnage interne
• Le laboratoire doit utiliser le facteur de réponse moyen ou la courbe de régression générée à partir de l'étalonnage initial pour la quantification de chaque analyte.
• Au moins 1 ion qualificatif (2 sont recommandés) respectant les proportions exigées doit être utilisé. Consulter SW-846 pour plus d'information à ce sujet. En présence de faibles concentrations, les proportions peuvent être augmentées, mais le qualificatif doit être présent pour permettre une identification positive. | NON |

* dichlorodifluorométhane, monochlorométhane, chlorure de vinyle, monobromométhane, monochloroéthane
Tableau 6-7 : Critères de performance – Fraction de carbone organique (FCO)

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Blanc de méthode (blanc de préparation) | Évaluation de la contamination en laboratoire | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Devrait être apparié à la matrice (même concentration de réactif que l’étalonnage et les étalons de CQ) et préparé avec les échantillons en lot
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte (sol ou eau)
• Le pourcentage de récupération devrait se situer entre 70 et 130 % | OUI : Nouvelle préparation ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter. |
| Matrice enrichie (ou matériau de référence selon la section 6.3) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte ou similaire
• Le pourcentage de récupération devrait se situer entre 70 et 130 % pour le sol et l’eau. | OUI : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤20 % pour l’eau et de ≤ 35 % pour les solides. | OUI : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanc de méthode (blanc de préparation)</td>
<td>Évaluation de la contamination en laboratoire</td>
<td>• Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Devrait être apparié à la matrice (même concentration de réactif que l’étalonnage et les étalons de CQ) et préparé avec les échantillons en lot
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL)</td>
<td>OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter.</td>
</tr>
<tr>
<td>Échantillon de contrôle de laboratoire (ECL)</td>
<td>Exactitude de la méthode de laboratoire sans effets de matrice</td>
<td>• Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte (sol ou eau)
• Le pourcentage de récupération devrait se situer entre 70 et 130 % pour le sol, l’eau et les tissus</td>
<td>OUI : Nouvelle préparation ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter.</td>
</tr>
<tr>
<td>Matrice enrichie (ou matériau de référence selon la section 6.3)</td>
<td>Homogénéité de l’échantillon, exactitude de la méthode de laboratoire avec effets de matrice</td>
<td>• Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte ou similaire
• Le pourcentage de récupération devrait se situer entre 60 et 140% pour le sol et l’eau</td>
<td>OUI : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat.</td>
</tr>
<tr>
<td>Duplicata de laboratoire</td>
<td>Précision de la méthode de laboratoire, homogénéité de l’échantillon</td>
<td>• Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤30 % pour l’eau et de ≤ 40% pour les sols et les tissus</td>
<td>OUI : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat.</td>
</tr>
<tr>
<td>Paramètres d'AQ/CQ requises</td>
<td>Objectif de qualité des données</td>
<td>Normes d'exécution requises</td>
<td>Inclus dans le rapport ou le certificat d'analyse</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Blanc de méthode (blanc de préparation) | Évaluation de la contamination en laboratoire | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Devrait être apparié à la matrice (même concentration de réactif que l'étalonnage et les étalons de CQ) et préparé avec les échantillons en lot
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | **OUI** : En cas d'échec d'un analyte, une mesure corrective est requise. Si l'analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d'une source distincte (sol ou eau)
• Le pourcentage de récupération d'ECL devrait se situer entre 80 et 120 %. | **OUI** : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter. |
| Matrice enrichie* (ou matériau de référence selon la section 6.3) | Homogénéité de l'échantillon, exactitude de la méthode de laboratoire avec effets de matrice | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d'une source distincte ou similaire
• Le pourcentage de récupération devrait se situer entre 70 et 130 % pour le sol et l'eau. | **OUI** : Si la récupération se situe à l'extérieur des limites spécifiées, répéter l'opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Duplicata de laboratoire | Précision de la méthode de laboratoire, homogénéité de l'échantillon | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤20 % pour l'eau et de ≤35 % pour les solides. | **OUI** : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |

*Les matrices enrichies pour le chrome hexavalent et le cyanure sont enrichies après l’extraction. Le chrome hexavalent peut réagir avec la matrice de sol et le cyanure libre formera des complexes avec le fer dans le sol, ce qui produira des taux de récupération anormalement bas.
Tableau 6-10 : Critères de performance – Bore soluble à l’eau chaude (SEC); Chlorure; Fluorure; Mercure; Métaux; Nitrate; Nitrate + Nitrite; Nitrite; Nutriments (TN et TP); Phosphore; Sulfate

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanc de méthode (blanc de préparation)</td>
<td>Évaluation de la contamination en laboratoire</td>
<td>• Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent • Devrait être apparié à la matrice (même concentration de réactif que l’étalonnage et les étalons de CQ) et préparé avec les échantillons en lot • Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL)</td>
<td>OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter.</td>
</tr>
<tr>
<td>Échantillon de contrôle de laboratoire (ECL)</td>
<td>Exactitude de la méthode de laboratoire sans effets de matrice</td>
<td>• Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent • Étalon provenant d’une source distincte (sol ou eau), enrichi après extraction pour le BSEC et le chlorure dans le sol • Le pourcentage de récupération d’ECL devrait se situer entre 80 et 120 %. BSEC 70 à 130 %</td>
<td>OUI : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter.</td>
</tr>
<tr>
<td>Matrice enrichie (ou matériau de référence selon la section 6.3)</td>
<td>Homogénéité de l’échantillon, exactitude-précision de la méthode de laboratoire avec effets de matrice</td>
<td>• Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent • Étalon provenant d’une source distincte ou similaire, enrichi après l’extraction dans le cas des paramètres de sol préparés à au moyen d’un acide aqueux ou faible/d’une base de lixiviation • Le pourcentage de récupération devrait se situer entre 70 et 130 % pour le sol et l’eau, et 60 à 140 % pour le BSEC (sol).</td>
<td>OUI : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat.</td>
</tr>
<tr>
<td>Duplicata de laboratoire</td>
<td>Exactitude de la méthode de laboratoire sans effets de matrice</td>
<td>• Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent. • La DPR devrait être de ≤20 % pour l’eau et de ≤ 30 % pour les sols. (40 % pour le BSEC, Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, Ti dans les sols.</td>
<td>OUI : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat.</td>
</tr>
</tbody>
</table>
Tableau 6-11 : Critères de performance – Oxygène dissous (OD)

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Blanc de méthode (blanc de préparation)* | Évaluation de la contamination en laboratoire | • Étalonnage de chaque instrument
• Le résidu devrait être inférieur au SDL. | OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | N/D | N/D |
| Matrice enrichie | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | N/D | N/D |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent.
• La DPR devrait être de ≤20 % pour l’eau. | OUI : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |

*Échantillon zéro OD. (Ajouter un excédent de sodium de sulfite, Na2SO3, et une trace de chlorure de cobalt, CoCl2, pour amener à OD zéro.)
Tableau 6-12 : Critères de performance – Conductivité (CE), Salinité

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Blanc de méthode (blanc de préparation) | Évaluation de la contamination en laboratoire | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | **OUI** : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte (sol ou eau)
• Le pourcentage de récupération d’ECL devrait se situer entre 90 et 110 % pour l’eau et 80 à 120 % pour le sol. | **OUI** : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter. |
| Matrice enrichie | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | N/D | N/D |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤ 10 % pour l’eau et < 20 % pour le sol. | **OUI** : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoye également, noter la récupération en incluant une note explicative au sujet du résultat. |
<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanc de méthode (blanc de préparation)</td>
<td>Évaluation de la contamination en laboratoire</td>
<td>N/D</td>
<td>N/D</td>
</tr>
</tbody>
</table>
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte (sol ou eau)
• L’exactitude du tampon de la deuxième source devrait être de ± 0,2 unité de pH pour le sol et l’eau | OUI : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter. |
| Matrice enrichie (ou matériau de référence selon la section 6.3) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • L’utilisation de matériaux de référence (internes ou autre) est recommandée pour les sols
• La cible devrait être de ± 0,3 unité de pH de la cible certifiée ou de la moyenne à long terme | N/D |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• À l’intérieur de 0,3 unité de pH pour le sol et l’eau | OUI : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
Tableau 6-14 : Critères de performance –Couleur (vraie); Composés chlorés réactifs*; Sédiments en suspension (matières totales en suspension); Turbidité; Matières dissoutes totales

<table>
<thead>
<tr>
<th>Paramètres d'AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d'exécution requises</th>
<th>Inclus dans le rapport ou le certificat d'analyse</th>
</tr>
</thead>
</table>
| Blanc de méthode (blanc de préparation) | Évaluation de la contamination en laboratoire | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Devrait être apparié à la matrice (même concentration de réactif que l'étalonnage et les étalons de CQ) et préparé avec les échantillons en lot
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | OUI : En cas d'échec d'un analyte, une mesure corrective est requise. Si l'analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL)* | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d'une source distincte
• Le pourcentage de récupération d'ECL devrait se situer entre 80 et 120 % | OUI : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter. |
| Matrice enrichie | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l'échantillon | • NA | OUI : Si la récupération se situe à l'extérieur des limites spécifiées, repéter l'opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Duplicata de laboratoire | Homogénéité de l'échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤20 % pour l'eau | OUI : Si la DPR se situe à l'extérieur des limites spécifiées, repéter l'opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |

L’ECL ne s’applique pas pour les composés chlorés réactifs
<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Blanc de méthode (blanc de préparation) | Évaluation de la contamination en laboratoire | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Devrait être apparié à la matrice (même concentration de réactif que l’étalonnage et les étalons de CQ) et préparé avec les échantillons en lot
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | OUI : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (réinjection, nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle de laboratoire (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot ou tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte
• Le pourcentage de récupération d’ECL devrait se situer entre 80 et 120 % | OUI : Nouvelle extraction ou nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter. |
| Matrice enrichie (ou matériau de référence selon la section 6.3) | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• Étalon provenant d’une source distincte ou similaire
• Le pourcentage de récupération devrait se situer entre 70 et 130 % | OUI : Si la récupération se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot ou à tous les 20 échantillons, selon ce qui est le plus fréquent
• La DPR devrait être de ≤30 % pour les sols | OUI : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
Tableau 6-16 : Critères de performance – Coliformes totaux, Coliformes fécaux (*Escherichia coli*)

<table>
<thead>
<tr>
<th>Paramètres d’AQ/CQ requises</th>
<th>Objectif de qualité des données</th>
<th>Normes d’exécution requises</th>
<th>Inclus dans le rapport ou le certificat d’analyse</th>
</tr>
</thead>
</table>
| Méthode (contrôle négatif) | Évaluation de la contamination en laboratoire | • Chaque lot
• Devrait être apparié à la matrice (même concentration de réactif que l’étalonnage et les étalons de CQ) et préparé avec les échantillons en lot
• Les analytes cibles doivent être inférieurs aux seuils de déclaration (SDL) | **OUI** : En cas d’échec d’un analyte, une mesure corrective est requise. Si l’analyte ne peut être corrigé (nouvelle analyse) les données rapportées doivent le noter. |
| Échantillon de contrôle positif (ECL) | Exactitude de la méthode de laboratoire sans effets de matrice | • Chaque lot
• Étalon provenant d’une source distincte
• L’échantillon de contrôle positif devrait se situer à l’intérieur des limites établies | **OUI** : Nouvelle analyse de tous les échantillons associés, si possible. Si non, les données rapportées doivent le noter. |
| Matrice enrichie | Exactitude de la méthode de laboratoire avec effets de matrice, homogénéité de l’échantillon | • NA | NA |
| Duplicata de laboratoire | Homogénéité de l’échantillon, précision de la méthode de laboratoire | • Analysé avec chaque lot.
• La plage (différence) du logarithme de dénombrements devrait être de ≤ 3,27 x par la plage moyenne de la matrice telle que déterminée de manière expérimentale. | **OUI** : Si la DPR se situe à l’extérieur des limites spécifiées, répéter l’opération si possible. Si non, ou si la répétition échoue également, noter la récupération en incluant une note explicative au sujet du résultat. |
| Variabilité du dénombrement | Précision de l’analyste | • De manière minimale, le ou les analystes comptent les mêmes plaques plusieurs fois par mois.
• La DRP devrait être de ≤ 5 % pour un seul analyste, et de 10 % entre les analystes. | **Non** : Si se situe à l’extérieur des limites spécifiées, de la formation supplémentaire est requise. |

* Il existe plusieurs autres mécanismes de vérification et de contrôle des conditions de milieu et de laboratoire. Pour plus de détails, consultez SM 22, 9020.*
7 RÉFÉRENCES

Conseil canadien des ministres de l’environnement (CCME) 1999, Recommandations canadiennes pour la qualité de l’environnement.

Ikonomou MG, Fernandez MP, He T, Cullon D, “Gas chromatography–high-resolution mass spectrometry based
Méthode for the simultaneous determination of nine Organoétain compounds in water, sediment and tissue”.

ISO/IEC 17025. « Exigences générales concernant la compétence des laboratoires d’étalonnages et d’essais » Norme

Joint Committee for Guides in Metrology (JCGM), International vocabulary of metrology – Basic and general

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup. Quality Control
Requirements and Performance Standards for the Analysis of Hexavalent Chromium, Cr(VI), by UV-Visible
Spectrophotometry, in Support of Response Actions under the Massachusetts Contingency Plan (MCP),
Revision No. 1, July 1, 2010.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup. Quality Control
Requirements and Performance Standards for the Analysis of Chlorinated Herbicides by Gas
Chromatography (GC) in Support of Response Actions under the Massachusetts Contingency Plan (MCP),
Revision No. 1, July 1, 2010.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup. Quality Control
Requirements and Performance Standards for the Analysis of Chlorinated Pesticides by Gas
Chromatography (GC) in Support of Response Actions under the Massachusetts Contingency Plan (MCP),
Revision No. 1, July 1, 2010.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup. Quality Control
Requirements and Performance Standards for the Analysis of Biphenyls polychlorés (BPCs) by Gas
Chromatography (GC) in Support of Response Actions under the Massachusetts Contingency Plan (MCP),
Revision No. 1, July 1, 2010.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup. Quality Control
Requirements and Performance Standards for the Analysis of SemiComposés organiques volatils by Gas
Chromatography/Mass Spectrometry (GC/MS) in Support of Response Actions under the Massachusetts
Contingency Plan (MCP) Revision No. 1, July 1, 2010.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup. Quality Control
Requirements and Performance Standards for the Analysis of Total Cyanide and Physiologically Available
Cyanide (PAC) in Support of Response Actions under the Massachusetts Contingency Plan (MCP), Revision
No. 1, July 1, 2010.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup. Quality Control
Requirements and Performance Standards for the Analysis of Composés organiques volatils by Gas
Chromatography/Mass Spectrometry (GC/MS) in Support of Response Actions under the Massachusetts
Contingency Plan (MCP) Revision No. 1, July 1, 2010.

Meridian. « Sampling and Laboratory Analysis of Country Food ». Préparé en vertu du marché 4500245190 pour
Santé Canada. Division des lieux contaminés. Santé environnementale et sécurité des consommateurs. Mars
2011.

LaSB Procedures Manual. LSBSOP.030. Laboratory Services Branch (LaSB). “Guidelines for the
Determination and Documentation of Uncertainty of Chemical Measurements.”

Ministère de l’Environnement de l’Ontario (MEO). Protocol for Analytical Methods Used in the Assessment of

Ministère de l’Environnement de l’Ontario (MEO). Protocol for Sampling and Analysis of Industrial/Municipal

ANNEXES

ANNEXE 1 LISTE ALPHABÉTIQUE DES COMPOSÉS / CRITÈRES RÉGLEMENTAIRES / SEUILS DE DÉCLARATION DES LABORATOIRES

<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acénaphthène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>83-32-9</td>
<td>HAP ou ABN</td>
<td>5,8 CCME 4,1 MECCO</td>
<td>0,5</td>
<td>0,00671 CCME 0,05 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Acénaphylène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>208-96-8</td>
<td>HAP ou ABN</td>
<td>1 MECCO</td>
<td>0,2</td>
<td>0,00587 CCME 0,093 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Acétone</td>
<td>Organique Composés organiques volatils</td>
<td>67-64-1</td>
<td>COV</td>
<td>30 MECCO</td>
<td>6</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Acide méthylchlorophénoxyacétique (acide 4-chloro-2-méthylphénylacétique; acide 2-méthyl-4-chlorophénylacétique, MCPA)</td>
<td>Organique Pesticides</td>
<td>94-74-6</td>
<td>P et H ou ABN ou Herbicide phényxyacide</td>
<td>0,025</td>
<td>0,02</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Acridine</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprenant polyaromatiques Hydrocarbures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aromatiques polycycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAP ou ABN</td>
<td>260-94-6</td>
<td></td>
<td>4,4 CCME 0,05*</td>
<td>0,05</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Aldicarbe</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides de la famille des carbamates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P et H ou</td>
<td>116-06-3</td>
<td></td>
<td>0,15</td>
<td>0,03</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Carbamate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composés organochlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO pesticides</td>
<td>309-00-2</td>
<td></td>
<td>3* 0,01 MECCO</td>
<td>0,01</td>
<td>0,002 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Métaux</td>
<td></td>
<td>7429-90-5</td>
<td></td>
<td>5</td>
<td>3</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Ammoniac (non ionisé)</td>
<td>Inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composés d’azote inorganiques</td>
<td></td>
<td>7664-41-7</td>
<td>APR</td>
<td>19</td>
<td>10</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Ammoniac (total)</td>
<td>Inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composés d’azote inorganiques</td>
<td></td>
<td>N/D</td>
<td>APR</td>
<td>21</td>
<td>10</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Aniline</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres composé organiques COSV</td>
<td></td>
<td>62-53-3</td>
<td>ABN</td>
<td>2,2</td>
<td>0,4</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Anthracène</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres composé organiques SP</td>
<td></td>
<td>120-12-7</td>
<td>HAP ou ABN</td>
<td>0,012 CCME 0,1 MECCO</td>
<td>0,01</td>
<td>0,0469 CCME 0,05 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Antimoine</td>
<td>Inorganique Métaux</td>
<td>7440-36-0</td>
<td>Métaux</td>
<td>1,5 MECCO</td>
<td>1</td>
<td>20 CCME 1 MECCO</td>
<td>2</td>
</tr>
<tr>
<td>Argent</td>
<td>Inorganique Métaux</td>
<td>7440-22-4</td>
<td>Métaux</td>
<td>0,1 CCME 0,3 MECCO</td>
<td>0,1</td>
<td>20 CCME 0,5 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td>Organique BPC</td>
<td>27323-18-8</td>
<td>BPC S/V</td>
<td>N/D</td>
<td>0,06</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>Inorganique Métaux</td>
<td>7440-38-2</td>
<td>Métaux</td>
<td>5 CCME 13 MECCO</td>
<td>1</td>
<td>5,9 CCME 6 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Organique P et H</td>
<td>1912-24-9</td>
<td>P et H</td>
<td>1,8</td>
<td>0,3</td>
<td>S/V N/D</td>
<td></td>
</tr>
<tr>
<td>Azote (total)</td>
<td>Inorganique APR</td>
<td>7727-37-9</td>
<td>APR 250 MECCO</td>
<td>50</td>
<td>S/V MECCO</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Baryum</td>
<td>Inorganique Métaux</td>
<td>7440-39-3</td>
<td>Métaux</td>
<td>610 MECCO</td>
<td>10</td>
<td>500 CCME 210 MECCO</td>
<td>10</td>
</tr>
<tr>
<td>Benzène</td>
<td>Organique COV</td>
<td>71-43-2</td>
<td>COV</td>
<td>110 CCME 88° 0,5 MECCO</td>
<td>5</td>
<td>0,0068 CCME 0,02 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Nom chimique</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>----------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Benz(a)anthracène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>56-55-3</td>
<td>HAP ou ABN</td>
<td>0,018</td>
<td>0,01</td>
<td>0,0317 CCME 0,095 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Benzo(a)pyrène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>50-32-8</td>
<td>HAP ou ABN</td>
<td>0,015 CCME 0,01* 0,01 MECCO</td>
<td>0,01</td>
<td>0,0319 CCME 0,05 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Benzo(b)fluoranthène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>205-99-2</td>
<td>HAP ou ABN</td>
<td>0,1 MECCO</td>
<td>0,05</td>
<td>0,16 CCME b+j+k 0,3 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Benzo(k)fluoranthène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>207-08-9</td>
<td>HAP ou ABN</td>
<td>0,1 MECCO</td>
<td>0,05</td>
<td>0,16 CCME b+j+k 0,05 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Benzo[ghi]pérylène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>191-24-2</td>
<td>HAP ou ABN</td>
<td>0,2 MECCO</td>
<td>0,04</td>
<td>0,17 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Béryllium</td>
<td>Inorganique Métaux</td>
<td>7440-41-7</td>
<td>Métaux</td>
<td>100 CCME 5,3* 0,5 MECCO</td>
<td>1</td>
<td>4 CCME 2,5 MECCO</td>
<td>0,8</td>
</tr>
<tr>
<td>Biphényle, 1,1'-</td>
<td>Organique ABN</td>
<td>92-52-4</td>
<td>ABN</td>
<td>0,5 MECCO</td>
<td>0,1</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Biphényles polychlorés</td>
<td>Organique Composés polyaromatiques Biphényles polychlorés</td>
<td>1336-36-3</td>
<td>BPC</td>
<td>0,2 MECCO</td>
<td>0,1</td>
<td>0,0215 CCME 0,07 MECCO</td>
<td>0,02</td>
</tr>
<tr>
<td>Bore</td>
<td>Inorganique Métaux</td>
<td>7440-42-8</td>
<td>Métaux</td>
<td>1500 CCME 500* 1700 MECCO</td>
<td>50</td>
<td>36 MECCO</td>
<td>5</td>
</tr>
<tr>
<td>Bore SEC</td>
<td>Inorganique Métaux</td>
<td></td>
<td>Métaux</td>
<td>S/V</td>
<td>N/D</td>
<td>2 CCME</td>
<td>0,4</td>
</tr>
<tr>
<td>Bromacil</td>
<td>Organique Pesticides</td>
<td>314-40-9</td>
<td>P et H</td>
<td>0,2</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Organique Pesticides Composés de benzonitrile</td>
<td>1689-84-5</td>
<td>P et H</td>
<td>0,33</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Inorganique Métaux</td>
<td>7440-43-9</td>
<td>Métaux</td>
<td>0,017, 0,005 µg/L (10 mg/L hardness) CCME 0,5 MECCO</td>
<td>0,01</td>
<td>0,6 CCME 0,6 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Calcium</td>
<td>Inorganique Métaux</td>
<td>7789-78-8</td>
<td>Métaux</td>
<td>1 000 000</td>
<td>1000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Captan</td>
<td>Organique Pesticides</td>
<td>133-06-2</td>
<td>P et H</td>
<td>1,3</td>
<td>0,5</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Carbamate, 3-lodo-2-propynyl butyl</td>
<td>Organique</td>
<td>55406-53-6</td>
<td>P et H ou Carbamate</td>
<td>1,9</td>
<td>1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Organique</td>
<td>63-25-2</td>
<td>P et H</td>
<td>0,2</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Carbofurane</td>
<td>Organique</td>
<td>1564-66-2</td>
<td>P et H ou Carbamate</td>
<td>1,8</td>
<td>0,4</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chlorodane, alpha-Chlordane</td>
<td>Organique</td>
<td>57-74-9</td>
<td>PO pesticides</td>
<td>0,004*</td>
<td>0,0002</td>
<td>0,0045 CCME</td>
<td>0,001</td>
</tr>
<tr>
<td>Chlorodane, beta-Chlordane</td>
<td>Composés organochlorés</td>
<td>5103-71-9 5566-34-7</td>
<td>PO pesticides</td>
<td>0,06 MECCO</td>
<td>0,0002</td>
<td>0,007 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Chlorure</td>
<td>Inorganique</td>
<td>16877-00-6</td>
<td>APR</td>
<td>100 000 CCME 790 000 MECCO</td>
<td>5000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chloroaniline, p-</td>
<td>Organique</td>
<td>106-47-8</td>
<td>ABN</td>
<td>10 MECCO</td>
<td>10</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Chlorophénol, 2-</td>
<td>Organique</td>
<td>95-57-8</td>
<td>PC ou ABN</td>
<td>2 MECCO</td>
<td>0,5</td>
<td>0,1 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>Organique</td>
<td>1897-45-6</td>
<td>P et H</td>
<td>0,18</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Organique</td>
<td>2921-88-2</td>
<td>P et H</td>
<td>0,002</td>
<td>0,003</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chlorure de didécyldiméthylammonium (CDDA)</td>
<td>Organique Pesticides</td>
<td>7173-51-5</td>
<td>P et H</td>
<td>1,5</td>
<td>1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chlorure de vinyle</td>
<td>Organique Composés organiques volatils</td>
<td>75-01-4</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,02 MECCO</td>
<td>0,02</td>
</tr>
<tr>
<td>Chrome</td>
<td>Inorganique Métaux</td>
<td>7440-47-3</td>
<td>Métaux</td>
<td>11 MECCO</td>
<td>1</td>
<td>37,3 CCME 26 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Chrome hexavalent (Cr(VI))</td>
<td>Inorganique Métaux</td>
<td>18540-29-9</td>
<td>APR</td>
<td>CCME 1 25 MECCO</td>
<td>1</td>
<td>0,4 CCME 0,66 MECCO</td>
<td>0,4</td>
</tr>
<tr>
<td>Chrome trivalent (Cr(III))</td>
<td>Inorganique Métaux</td>
<td>16065-83-1</td>
<td>APR Métaux</td>
<td>4,9</td>
<td>2</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Chrysène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>218-01-9</td>
<td>HAP ou ABN</td>
<td>0,1 MECCO</td>
<td>0,1</td>
<td>0,0571 CCME 0,18 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Inorganique Métaux</td>
<td>7440-48-4</td>
<td>Métaux</td>
<td>50 CCME 3,8 MECCO</td>
<td>10</td>
<td>40 CCME 19 MECCO</td>
<td>2</td>
</tr>
<tr>
<td>Coliformes, fécaux (Escherichia coli)</td>
<td>Inorganique Biologique</td>
<td>N/D</td>
<td>bacti</td>
<td>100 per 100 mL</td>
<td>< 1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Composés chlorés réactifs</td>
<td>Inorganique Composés chlorés réactifs</td>
<td>N/D</td>
<td>APR</td>
<td>0,5</td>
<td>3‡</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Coliformes totaux</td>
<td>Inorganique Biologique</td>
<td>N/D</td>
<td>bacti</td>
<td>1000 per 100 mL</td>
<td>< 1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Composés phénoliques non chlorés</td>
<td>Organique Composés hydroxy aromatiques</td>
<td>N/D</td>
<td>CPNC ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>non halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couleur (vraie)</td>
<td>Inorganique</td>
<td>N/D</td>
<td>APR</td>
<td>Narrative</td>
<td>3000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Humide Physique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivité</td>
<td>Inorganique</td>
<td>N/D</td>
<td>APR</td>
<td>S/V</td>
<td>5 µS/cm</td>
<td>2 dS/m CCME</td>
<td>0,1 dS/m</td>
</tr>
<tr>
<td>Humide Physique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>Inorganique</td>
<td>7440-50-8</td>
<td>Métaux</td>
<td>2 CCME 5 MECCO</td>
<td>1</td>
<td>18,7 CCME 16 MECCO</td>
<td>5</td>
</tr>
<tr>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Organique</td>
<td>21725-46-2</td>
<td>P et H</td>
<td>0,5 0,5⁺</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Pesticides Composés de triazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanure</td>
<td>Inorganique</td>
<td>57-12-5</td>
<td>APR</td>
<td>5 (as free CN) CCME 1⁺ 5 MECCO</td>
<td>1</td>
<td>0,9 CCME 0,051 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Humide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanobactérie (algue bleu-vert)</td>
<td>Inorganique</td>
<td>N/D</td>
<td>bacti</td>
<td>Croissance rapide, algues bleu vert</td>
<td>100</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Biologique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltaméthrine</td>
<td>Organique</td>
<td>52918-63-5</td>
<td>P et H</td>
<td>0,0004</td>
<td>0,0009⁺</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di(2-éthylhexyl) phthalate</td>
<td>Organique</td>
<td>117-81-7</td>
<td>ABN</td>
<td>16 CCME 10 MECCO</td>
<td>2</td>
<td>16 CCME 10 MECCO</td>
<td>2</td>
</tr>
<tr>
<td>Esters de phthalate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenz(a,h)anthracène</td>
<td>Organique</td>
<td>53-70-3</td>
<td>HAP ou ABN</td>
<td>0,2 MECCO</td>
<td>0,008</td>
<td>0,00622 CCME 0,06 MECCO</td>
<td>0,005</td>
</tr>
<tr>
<td>Composés polyaromatiques Hydrocarbures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aromatiques polycycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volume 4: Méthodes D’analyse 164
<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l’eau (µg/L)</th>
<th>SDL maximal recommandé pour l’eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibenzo-p-dioxines polychlorés/dibenzo furanes</td>
<td>Organique Composés polyaromatiques Dioxines et furanes polychlorés</td>
<td></td>
<td>DDPC</td>
<td>0,015 ng/L TEQ MECCO</td>
<td>0,015 ng/L TEQ</td>
<td>0,85 ng/kg TEQ CCME 7 ng/kg TEQ MECCO</td>
<td>0,8 ng/kg TEQ</td>
</tr>
<tr>
<td>Dibromochlorométhane (Chlorodibromométhane)</td>
<td>Organique Composés aliphatiques halogénés Méthanes halogénés</td>
<td>124-48-1</td>
<td>THM ou COV</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Dicamba</td>
<td>Organique Pesticides Acide carboxylique aromatique</td>
<td>1918-00-9</td>
<td>P et H</td>
<td>0,006</td>
<td>0,006</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Dichloro diphenyl dichloréthane, 2,2-Bis (p-chlorophényl)-1,1-dichloroéthane</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>72-54-8</td>
<td>PO pesticides</td>
<td>1,8 MECCO</td>
<td>0,1</td>
<td>0,00122 CCME 0,008 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Dichloro diphenyl éthylène, 1,1-Dichloro-2,2-bis(p-chlorophényl)-éthène</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>72-55-9</td>
<td>PO pesticides</td>
<td>10 MECCO</td>
<td>0,1</td>
<td>0,00207 CCME 0,005 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Dichloro diphenyl trichloroéthane; 2,2-Bis(p-chlorophényl)-1,1,1-trichloroéthane</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>50-29-3</td>
<td>PO pesticides</td>
<td>0,001<sup>*</sup> 0,05 MECCO</td>
<td>0,02</td>
<td>0,00119 CCME 0,007 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,2-</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td>COV</td>
<td>0,7 CCME</td>
<td>0,5</td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Benzènes chlorés</td>
<td></td>
<td></td>
<td>0,5 MECCO</td>
<td></td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,3-</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td>COV</td>
<td>150 CCME</td>
<td>0,5</td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Benzènes chlorés</td>
<td></td>
<td></td>
<td>42°</td>
<td></td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td>Dichlorobenzène, 1,4-</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td>COV</td>
<td>26 CCME</td>
<td>0,5</td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Benzènes chlorés</td>
<td></td>
<td></td>
<td>0,5 MECCO</td>
<td></td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td>Dichlorobenzidine, 3,3'-</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABN</td>
<td></td>
<td></td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>1 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Dichlorobromométhane (Bromodichlorométhane)</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Méthanes halogénés</td>
<td></td>
<td>THM ou COV</td>
<td>100 CCME</td>
<td>1</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Dichlorodifluorométhane</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés organiques volatils</td>
<td></td>
<td>COV</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Dichloroéthane, 1,1-</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Éthanes chlorés</td>
<td></td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Volume 4: Méthodes D'analyse
<table>
<thead>
<tr>
<th>Nom chimique (inorganiques en caractère gras)</th>
<th>Groupes chimiques</th>
<th>N° CAS</th>
<th>Groupe de paramètres</th>
<th>Critère le plus bas pour l'eau (µg/L)</th>
<th>SDL maximal recommandé pour l'eau (µg/L)</th>
<th>Critère le plus bas pour les sols et les sédiments (mg/kg)</th>
<th>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloroéthane, 1,2-</td>
<td>Organique</td>
<td>107-06-2</td>
<td>COV</td>
<td>5 CCME</td>
<td>0,5</td>
<td>0,1 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Éthanes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloroéthane, 1,1-</td>
<td>Organique</td>
<td>75-35-4</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Éthanes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloroéthane, 1,2- (cis- + trans-)</td>
<td>Organique</td>
<td>156-59-2</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Éthanes chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorométhane (chlorure de méthylène)</td>
<td>Organique</td>
<td>75-09-2</td>
<td>COV</td>
<td>50 CCME</td>
<td>10</td>
<td>0,1 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Méthanes halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorophénol, 2,4-</td>
<td>Organique</td>
<td>120-83-2</td>
<td>CP ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorophénols</td>
<td>Organique</td>
<td></td>
<td>CP ou ABN</td>
<td>0,2</td>
<td>0,2</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>------------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dichloropropane, 1,2-</td>
<td>Organique</td>
<td>78-87-5</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,05 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Méthanes halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloropropène, 1,3- (cis- + trans-)</td>
<td>Organique</td>
<td>542-75-6</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,05 MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Méthanes halogénés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofop-méthyl</td>
<td>Organique</td>
<td>51338-27-3</td>
<td>P et H</td>
<td>0,18</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>Organique</td>
<td>60-57-1</td>
<td>PO pesticides</td>
<td>0,056*</td>
<td>0,02</td>
<td>0,00071</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés organochlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,002 MECCO</td>
<td></td>
</tr>
<tr>
<td>Diéthylène glycol</td>
<td>Organique</td>
<td>84-66-2</td>
<td>ABN</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>ABN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diisopropanolamine (DIPA)</td>
<td>Organique</td>
<td>110-97-4</td>
<td>APR</td>
<td>1600</td>
<td>10</td>
<td>180</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Autres composé organiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Diméthoate</td>
<td>Organique Pesticides Composés organophosphorés</td>
<td>60-51-5</td>
<td>P et H</td>
<td>3</td>
<td>0,6</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Diméthylphénol, 2,4-</td>
<td>Organique ABN</td>
<td>105-67-9</td>
<td>ABN ou NCP</td>
<td>10 MECCO</td>
<td>2</td>
<td>0,2 MECCO</td>
<td>0,2</td>
</tr>
<tr>
<td>Dinitrophénol, 2,4-</td>
<td>Organique ABN</td>
<td>51-28-5</td>
<td>ABN ou NCP</td>
<td>10 MECCO</td>
<td>10</td>
<td>2 MECCO</td>
<td>0,2</td>
</tr>
<tr>
<td>Dinitrotoluène, 2,4-(2,6-)</td>
<td>Organique ABN</td>
<td>121-14-2</td>
<td>ABN</td>
<td>5 MECCO</td>
<td>5</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Dinosèbe</td>
<td>Organique Pesticides</td>
<td>88-85-7</td>
<td>P et H</td>
<td>0,05</td>
<td>0,05</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Dioxane, 1,4-</td>
<td>Organique Composés organiques volatils</td>
<td>123-91-1</td>
<td>ABN ou COV</td>
<td>NRG CCME 50 MECCO</td>
<td>20</td>
<td>0,2 MECCO</td>
<td>20</td>
</tr>
<tr>
<td>Dibromure d'éthylène (dibromoéthane, 1,2-)</td>
<td>Organique Composés organiques volatils</td>
<td>106-93-4</td>
<td>COV</td>
<td>0,2 MECCO</td>
<td>0,2</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>115-29-7 195-59-6 33213-65-9</td>
<td>PO pesticides</td>
<td>0,002 CCME 0,05 MECCO</td>
<td>0,002</td>
<td>0,04 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Endrin</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>72-20-8</td>
<td>PO pesticides</td>
<td>0,036* 0,05 MECCO</td>
<td>0,02</td>
<td>0,00267 CCME 0,003 MECCO</td>
<td>0,001</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Esters d’acide phthalique</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td>N/D</td>
<td>30</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>Esters de phthalate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étain</td>
<td>Inorganique</td>
<td>7440-31-5</td>
<td>Métaux</td>
<td>S/V</td>
<td>N/D</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Éthylbenzène</td>
<td>Organique</td>
<td>100-41-4</td>
<td>COV</td>
<td>2,4 CCME 0,5 MECC</td>
<td>2</td>
<td>0,018 CCME 0,05 MECC</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Éthylène glycol</td>
<td>Organique</td>
<td>107-21-1</td>
<td>Glycols</td>
<td>192 000 190000*</td>
<td>5000</td>
<td>960</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Glycols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fer</td>
<td>Inorganique</td>
<td>7439-89-6</td>
<td>Métaux</td>
<td>300</td>
<td>60</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranthène</td>
<td>Organique</td>
<td>206-44-0</td>
<td>HAP ou ABN</td>
<td>0,04 CCME 0,04 MECC</td>
<td>0,01</td>
<td>0,111 CCME 0,24 MECC</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorène</td>
<td>Organique</td>
<td>86-73-7</td>
<td>HAP ou ABN</td>
<td>3 CCME 120 MECC</td>
<td>0,1</td>
<td>0,0212 CCME 0,05 MECC</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorure</td>
<td>Inorganique</td>
<td>N/D</td>
<td>APR</td>
<td>120</td>
<td>50</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Humide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fraction de carbone organique</td>
<td>Organique Composés organiques volatils APR</td>
<td>N/D</td>
<td>APR</td>
<td>S/V MECCO</td>
<td>N/D</td>
<td>S/V MECCO</td>
<td>N/D</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Organique Pesticides Composés organophosphorés</td>
<td>1071-83-6</td>
<td>P et H ou Glyphosate</td>
<td>280</td>
<td>10</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Heptachlore</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>76-44-8</td>
<td>PO pesticides</td>
<td>0,0038* 0,01 MECCO</td>
<td>0,002</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Heptachloréoxyde</td>
<td>Organique Pesticides/Herbicides/Fongicides PO pesticides</td>
<td>1024-57-3</td>
<td>PO pesticides</td>
<td>0,01 MECCO</td>
<td>0,01</td>
<td>0,0006 CCME 0,005 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Herbicides de type phenoxy, Acide dichlorophénoxyacétique, 2,4- (2,4-D))</td>
<td>Organique Pesticides</td>
<td></td>
<td>P et H ou ABN ou Herbicide phénoxyacide</td>
<td>4</td>
<td>0,8</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Hexachlorobenzène</td>
<td>Organique Composés aromatiques monocycliques Benzènes chlorés</td>
<td>118-74-1</td>
<td>PO pesticides</td>
<td>0,52 CCME 0,01 MECCO</td>
<td>0,01</td>
<td>0,05 CCME 0,01 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hexachlorobutadiène (HCBD)</td>
<td>Organique Composés aliphatiques halogénés</td>
<td>87-68-3</td>
<td>PO pesticides</td>
<td>1,3 CCME 0,01 MECCO</td>
<td>0,2</td>
<td>0,01 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Hexachlorocyclohexane, gamma- (γ-HCH, Lindane, γ-BHC)</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>58-89-9</td>
<td>PO pesticides</td>
<td>0,01 CCME 0,01 MECCO</td>
<td>0,01</td>
<td>0,00032 CCME 0,01 MECCO</td>
<td>0,0001</td>
</tr>
<tr>
<td>Hexachloroéthane</td>
<td>Organique Pesticides/Herbicides/Fongicides PO pesticides</td>
<td>67-72-1</td>
<td>PO pesticides</td>
<td>0,01 MECCO</td>
<td>0,01</td>
<td>0,01 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Hexane, n-</td>
<td>Organique Composés organiques volatils</td>
<td>110-54-3</td>
<td>COV</td>
<td>5 MECCO</td>
<td>5</td>
<td>0,49 CCME 0,05 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F1</td>
<td>Organique Autres composé organiques HCP</td>
<td>N/D</td>
<td>HCP</td>
<td>750 MECCO</td>
<td>100</td>
<td>30 CCME** 17 MECCO</td>
<td>10</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F2</td>
<td>Organique Autres composé organiques HCP</td>
<td>N/D</td>
<td>HCP</td>
<td>150 MECCO</td>
<td>150</td>
<td>150 CCME** 10 MECCO</td>
<td>30</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F3</td>
<td>Organique Autres composé organiques HCP</td>
<td>N/D</td>
<td>HCP</td>
<td>500 MECCO</td>
<td>500</td>
<td>300 CCME** 240 MECCO</td>
<td>50</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F4†</td>
<td>Organique Autres composé organiques HCP</td>
<td>N/D</td>
<td>HCP</td>
<td>500 MECCO</td>
<td>500</td>
<td>2800 CCME** 120 MECCO</td>
<td>50</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hydrocarbures pétroliers F4G†</td>
<td>Organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autres composé organiques HCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidaclorpride</td>
<td>Organique</td>
<td>138261-41-3</td>
<td>P et H ou Carbamate</td>
<td>0,23</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Pesticides/Herbicides/Fongicides Carbamate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indéno(1,2,3-c,d)pyrène</td>
<td>Organique</td>
<td>193-39-5</td>
<td>HAP ou ABN</td>
<td>0,2 MECCO</td>
<td>0,05</td>
<td>2,7 CCME</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linuron</td>
<td>Organique</td>
<td>330-55-2</td>
<td>P et H</td>
<td>0,071</td>
<td>0,07</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>Inorganique</td>
<td>7439-93-2</td>
<td>Métaux</td>
<td>2500</td>
<td>20</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnésium</td>
<td>Inorganique</td>
<td>7439-95-4</td>
<td>Métaux</td>
<td>S/V</td>
<td>1000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganèse</td>
<td>Inorganique</td>
<td>7439-96-5</td>
<td>Métaux</td>
<td>200</td>
<td>20</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matières dissoutes totale (salinité)</td>
<td>Inorganique</td>
<td>N/D</td>
<td>Physique</td>
<td>500 000</td>
<td>10 mg/L</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Physique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure</td>
<td>Inorganique</td>
<td>7439-97-6</td>
<td>APR</td>
<td>0,016 CCME</td>
<td>0,01</td>
<td>0,130 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méthoprène</td>
<td>Organique</td>
<td>40596-69-8</td>
<td>P et H</td>
<td>0,09</td>
<td>0,05</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Pesticides/Herbicides/Fongicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Méthoxychlore</td>
<td>Organique Pesticides/Herbicides/Fongicides PO pesticides</td>
<td>72-43-5</td>
<td>PO pesticides</td>
<td>0,05 MECCO</td>
<td>0,05</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Méthyléthylcétone (MEK)</td>
<td>Organique Composés organiques volatils</td>
<td>78-93-3</td>
<td>COV</td>
<td>20 MECCO</td>
<td>20</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Méthylisobutylcétone (MIBK)</td>
<td>Organique Composés organiques volatils</td>
<td>108-10-1</td>
<td>COV</td>
<td>20 MECCO</td>
<td>20</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Méthyl tert-butyl éther (MTBE)</td>
<td>Organique Non-Composés aliphatiques halogénés Éther aliphatique</td>
<td>1634-04-4</td>
<td>COV</td>
<td>5000 CCME 340* 15 MECCO</td>
<td>10</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Méthylmercure</td>
<td>Organique Autres composé organiques SP</td>
<td>22967-92-6</td>
<td>APR</td>
<td>0,004 CCME 0,12 MECCO</td>
<td>0,0008</td>
<td>0,033 (tissue) CCME</td>
<td>0,006</td>
</tr>
<tr>
<td>Méthylnaphtalènes, 2- et 1-</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>91-57-6 90-12-0</td>
<td>HAP ou ABN</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,0202 CCME 0,05 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Métolachlore</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>51218-45-2</td>
<td>PO pesticides ou ABN</td>
<td>7,8</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Métribuzine</td>
<td>Organique Pesticides Composés de triazine</td>
<td>21087-64-9</td>
<td>P et H</td>
<td>0,5</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Molybdène</td>
<td>Inorganique Métaux</td>
<td>7439-98-7</td>
<td>Métaux</td>
<td>73 CCME 23 MECCO</td>
<td>1</td>
<td>5 CCME 2 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Monobromométhane (Bromométhane, Méthyl Bromure)</td>
<td>Organique Composés aliphatiques halogénés Méthanes halogénés</td>
<td>74-83-9</td>
<td>COV</td>
<td>0,89 MECCO</td>
<td>0,05 MECCO</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Monochlorobenzène</td>
<td>Organique Composés aromatiques monocycliques Benzènes chlorés</td>
<td>108-90-7</td>
<td>COV</td>
<td>1,3 CCME 0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Monochlorométhane (chlorure de méthyle)</td>
<td>Organique Composés aliphatiques halogénés Méthanes halogénés</td>
<td>74-87-3</td>
<td>COV</td>
<td>S/V</td>
<td>N/D</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Monochlorophénols</td>
<td>Organique Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td>CP ou ABN</td>
<td>7</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Naphthalène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>91-20-3</td>
<td>HAP ou ABN</td>
<td>1,1 CCME 7 MECCO</td>
<td>0,2</td>
<td>0,0346 CCME 0,05 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Nickel</td>
<td>Inorganique Métaux</td>
<td>7440-02-0</td>
<td>Métaux</td>
<td>25 CCME 14 MECCO</td>
<td>2</td>
<td>50 CCME 16 MECCO</td>
<td>2</td>
</tr>
<tr>
<td>Nitrate</td>
<td>Inorganique Composés d'azote inorganiques</td>
<td>84145-82-4 14797-55-8</td>
<td>APR</td>
<td>13 000</td>
<td>20</td>
<td>S/V</td>
<td>1</td>
</tr>
<tr>
<td>Nitrate + Nitrite</td>
<td>Inorganique Composés d'azote inorganiques</td>
<td>N/D</td>
<td>APR</td>
<td>100 000</td>
<td>20</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nitrite</td>
<td>Inorganique Composés d'azote inorganiques</td>
<td>14797-65-0</td>
<td>APR</td>
<td>60 NO2-N</td>
<td>20</td>
<td>S/V</td>
<td>1</td>
</tr>
<tr>
<td>Nonylphénol et ses dérivés éthoxylés</td>
<td>Organique Nonylphénol et ses dérivés éthoxylés</td>
<td>84852-15-3</td>
<td>APR</td>
<td>0,7</td>
<td>0,1 NP 0,1 NPO group</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Nutriments (TN et TP)</td>
<td>Inorganique Humide</td>
<td>APR</td>
<td>Cadre d'orientation</td>
<td>TN 50 TP 10</td>
<td>S/V</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td>Oxyde de bis (2-chloroéthyle)</td>
<td>Organique ABN</td>
<td>111-44-4</td>
<td>ABN</td>
<td>5 MECCO</td>
<td>1</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Oxyde de bis (2-chloroisopropyl)</td>
<td>Organique ABN</td>
<td>39638-32-9</td>
<td>ABN</td>
<td>4 MECCO</td>
<td>1</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Oxygène dissous (OD)</td>
<td>Inorganique Physique</td>
<td>N/D</td>
<td>APR</td>
<td>5500</td>
<td>2000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Pentachlorobenzène</td>
<td>Organique Composés aromatiques monocycliques Benzènes chlorés</td>
<td>608-93-5</td>
<td>PO pesticides ou ABN</td>
<td>6</td>
<td>1</td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pentachlorophénol (PCP)</td>
<td>Organique Composés aromatiques monocycliques Phénols chlorés</td>
<td>87-86-5</td>
<td>CP ou ABN</td>
<td>0,5 CCME 0,5 MECCO</td>
<td>0,1</td>
<td>7,6 CCME 0,1 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Perfluorooctanesulfonate (PFOS)</td>
<td>Acides sulfoniques perfluorés</td>
<td>1763-23-1</td>
<td>PFOS</td>
<td>0,3</td>
<td>0,02</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Perméthrine</td>
<td>Organique Pesticides Composés organochlorés</td>
<td>52645-53-1</td>
<td>P et H</td>
<td>0,001</td>
<td>0,004</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Phtalate de diméthyle</td>
<td>Organique ABN</td>
<td>131-11-3</td>
<td>ABN</td>
<td>2 MECCO</td>
<td>2</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Phthalate de di-n-butyl</td>
<td>Organique Esters de phthalate</td>
<td>84-74-2</td>
<td>ABN</td>
<td>19</td>
<td>4</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Phthalate de di-n-octyl</td>
<td>Organique Esters de phthalate</td>
<td>117-84-0</td>
<td>ABN</td>
<td>S/V</td>
<td>2</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Plomb</td>
<td>Inorganique Métaux</td>
<td>7439-92-1</td>
<td>Métaux</td>
<td>1 CCME 1,9 MECCO</td>
<td>0,2</td>
<td>30,2 CCME 31 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>pH</td>
<td>Inorganique Acidité, alcalinité et pH</td>
<td>N/D</td>
<td>APR</td>
<td>Eau douce : 6,5 à 9,0 Marine : 7,0 à 8,7 6,5 à 8,7*</td>
<td>N/D</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Phénanthrène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>85-01-8</td>
<td>HAP ou ABN</td>
<td>0,4 CCME 0,1 MECCO</td>
<td>0,08</td>
<td>0,0419 CCME 0,19 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Phénol</td>
<td>Organique Composés hydroxy aromatiques</td>
<td>108-95-2</td>
<td>CPNC ou ABN</td>
<td>5 MECCO</td>
<td>1</td>
<td>0,5 MECCO</td>
<td>0,5</td>
</tr>
<tr>
<td>Phénols (monohydriques et dihydriques)</td>
<td>Organique Composés hydroxy aromatiques</td>
<td>108-95-2</td>
<td>CPNC ou ABN</td>
<td>2</td>
<td>0,8</td>
<td>3,8</td>
<td>1</td>
</tr>
<tr>
<td>Phosphore</td>
<td>Inorganique Humide</td>
<td>N/D</td>
<td>APR</td>
<td>Cadre d'orientation</td>
<td>10</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Picloram</td>
<td>Organique Pesticides</td>
<td>1918-02-1</td>
<td>P et H</td>
<td>29</td>
<td>10</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Propylène glycol</td>
<td>Organique Glycols</td>
<td>57-55-6</td>
<td>Glycols</td>
<td>500 000</td>
<td>10000</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Pyrène</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>129-00-0</td>
<td>HAP ou ABN</td>
<td>0,025 CCME 0,2 MECCO</td>
<td>0,02</td>
<td>0,053 CCME 0,1 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Quinoléine</td>
<td>Organique Composés polyaromatiques Hydrocarbures aromatiques polycycliques</td>
<td>91-22-5</td>
<td>HAP ou ABN</td>
<td>3,4 CCME</td>
<td>0,3</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>Rapport d'adsorption du sodium</td>
<td>Inorganique</td>
<td>N/D</td>
<td>APR</td>
<td>S/V</td>
<td>N/D</td>
<td>5 CCME 1 MECCO</td>
<td>1</td>
</tr>
<tr>
<td>Salinité</td>
<td>Inorganique Physique</td>
<td>N/D</td>
<td>APR</td>
<td>36%</td>
<td>N/D</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Sédiments en suspension</td>
<td>Inorganique</td>
<td>N/D</td>
<td>APR</td>
<td>5 mg/L sur le fond</td>
<td>2 mg/L</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Physique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbidité, clarté et solides en suspension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matières particulières totales en suspension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sélénium</td>
<td>Inorganique</td>
<td>7782-49-2</td>
<td>Métaux</td>
<td>1 CCME 5 MECCO</td>
<td>0,5</td>
<td>1 CCME 1,2 MECCO</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>Organique</td>
<td>122-34-9</td>
<td>P et H</td>
<td>0,5</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composés de triazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>Inorganique</td>
<td>7440-23-5</td>
<td>Métaux</td>
<td>490000 MECCO</td>
<td>500</td>
<td>S/V MECCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Métaux and APR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soufre (élémentaire)</td>
<td>Inorganique</td>
<td>7704-34-9</td>
<td>APR</td>
<td>S/V</td>
<td>N/D</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Composés de soufre inorganiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrène</td>
<td>Organique</td>
<td>100-42-5</td>
<td>COV</td>
<td>72 CCME 0,5 MECCO</td>
<td>1</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrat de lit</td>
<td>Inorganique</td>
<td>N/D</td>
<td>APR</td>
<td>10% < 2 mm, 19% < 3 mm, 25% < 6,35 mm</td>
<td>N/D</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Physique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbidité, clarté et solides en suspension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matières particulières totales en suspension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfolane (Bondelane)</td>
<td>Organique</td>
<td>126-33-0</td>
<td>APR</td>
<td>500</td>
<td>100</td>
<td>0,8</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>Composé de soufre organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>Inorganique</td>
<td>18785-72-3</td>
<td>APR</td>
<td>1 000 000</td>
<td>5 mg/L</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Composés de soufre inorganiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sursaturation de gaz dissous</td>
<td>Inorganique Physique</td>
<td>N/D</td>
<td>APR</td>
<td>8 ΔP mm Hg</td>
<td>8 ΔP mm Hg</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Taille des particules</td>
<td>Inorganique Physique</td>
<td>N/D</td>
<td>N/D</td>
<td>S/V</td>
<td>N/D</td>
<td>S/V</td>
<td>0,5 %</td>
</tr>
<tr>
<td>Tébuthiuron</td>
<td>Organique Pesticides</td>
<td>34014-18-1</td>
<td>P et H</td>
<td>0,27</td>
<td>0,05</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Tétrachlorobenzène, 1,2,3,4-</td>
<td>Organique Composés aromatiques monocycliques Benzènes chlorés</td>
<td>634-66-2</td>
<td>PO pesticides ou ABN</td>
<td>1,8</td>
<td>0,36</td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td>Tétrachlorobenzène, 1,2,3,5-</td>
<td>Organique Composés aromatiques monocycliques Benzènes chlorés</td>
<td>634-90-2</td>
<td>PO pesticides ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Tétrachlorobenzène, 1,2,4,5-</td>
<td>Organique Composés aromatiques monocycliques Benzènes chlorés</td>
<td>95-94-3</td>
<td>PO pesticides ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Tétrachloroéthane, 1,1,1,2-</td>
<td>Organique Composés organiques volatils</td>
<td>630-20-6</td>
<td>COV</td>
<td>1,1 MECCO</td>
<td>0,5</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Tétrachloroéthane, 1,1,2,2-</td>
<td>Organique Composés aliphatiques halogénés Éthènes chlorés</td>
<td>79-34-6</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Tétrachloroéthane, 1,1,2,2- (TCE, tétrachloroéthylène)</td>
<td>Organique Composés aliphatiques halogénés Éthènes chlorés</td>
<td>127-18-4</td>
<td>COV</td>
<td>110 CCME 0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tétrachlorométhane (tétrachlorure de carbone)</td>
<td>Organique</td>
<td>56-23-5</td>
<td>COV</td>
<td>5 CCME 0,56* 0,2 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Tétrachlorophénol, 2,3,4,6-</td>
<td>Organique</td>
<td>58-90-2</td>
<td>CP ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Tétrachlorophénols</td>
<td>Organique</td>
<td>25167-83-3</td>
<td>CP ou ABN</td>
<td>1</td>
<td>0,2</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Thallium</td>
<td>Inorganique</td>
<td>7440-28-0</td>
<td>Métaux</td>
<td>0,8 CCME 0,5 MECCO</td>
<td>0,2</td>
<td>1 CCME 1 MECCO</td>
<td>0,4</td>
</tr>
<tr>
<td>Thiophène</td>
<td>Organique</td>
<td>110-02-1</td>
<td>COV</td>
<td>S/V</td>
<td>N/D</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>Toluène</td>
<td>Organique</td>
<td>108-88-3</td>
<td>COV</td>
<td>2 CCME 0,8 MECCO</td>
<td>0,5</td>
<td>0,08 CCME 0,2 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Toxaphène</td>
<td>Organique</td>
<td>8001-35-2</td>
<td>PO pesticides</td>
<td>0,0002*</td>
<td>0,05†</td>
<td>0,0001</td>
<td>0,005†</td>
</tr>
<tr>
<td>Triallate</td>
<td>Organique</td>
<td>2303-17-5</td>
<td>P et H or Carbamate</td>
<td>0,24</td>
<td>0,1</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tribromométhane (Bromoforme)</td>
<td>Organique</td>
<td>75-25-2</td>
<td>COV</td>
<td>100</td>
<td>2</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Tributylétain</td>
<td>Organique</td>
<td>56-35-9</td>
<td>Organoétain</td>
<td>0,001</td>
<td>0,001</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td>Trichlorobenzène, 1,2,3-</td>
<td>Organique</td>
<td>87-61-6</td>
<td>COV ou ABN</td>
<td>8</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Trichlorobenzène, 1,2,4-</td>
<td>Organique</td>
<td>120-82-1</td>
<td>COV ou ABN</td>
<td>5,4 CCME 0,5 MECCO</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Trichlorobenzène, 1,3,5-</td>
<td>Organique</td>
<td>108-70-3</td>
<td>COV ou ABN</td>
<td>S/V</td>
<td>N/D</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Trichloroéthane, 1,1,1-</td>
<td>Organique</td>
<td>71-55-6</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Trichloroéthane, 1,1,2-</td>
<td>Organique</td>
<td>79-00-5</td>
<td>COV</td>
<td>0,5 MECCO</td>
<td>0,5</td>
<td>0,1 CCME 0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Trichloroéthène, 1,1,2- (TCE, tétrachloroéthylène)</td>
<td>Organique</td>
<td>79-01-6</td>
<td>COV</td>
<td>21 CCME 0,5 MECCO</td>
<td>1</td>
<td>0,01 CCME 0,05 MECCO</td>
<td>0,01</td>
</tr>
<tr>
<td>Trichlorofluorométhane</td>
<td>Organique</td>
<td>75-69-4</td>
<td>COV</td>
<td>150 MECCO</td>
<td>1</td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l’eau (µg/L)</td>
<td>SDL maximal recommandé pour l’eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Trichlorométhane (Chloroforme)</td>
<td>Organique</td>
<td>67-66-3</td>
<td>COV</td>
<td>1,8 CCME</td>
<td>0,5</td>
<td>0,1 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aliphatiques halogénés Méthanes halogénés</td>
<td></td>
<td></td>
<td>2 MECCO</td>
<td></td>
<td>0,05 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td>Trichlorophénol, 2,4,5-</td>
<td>Organique</td>
<td>95-95-4</td>
<td>CP ou ABN</td>
<td>0,2 MECCO</td>
<td>0,2</td>
<td>0,1 MECCO</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés organiques volatils CP ou ABN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorophénol, 2,4,6-</td>
<td>Organique</td>
<td>88-06-2</td>
<td>CP ou ABN</td>
<td>0,2 MECCO</td>
<td>N/D</td>
<td>0,05 CCME</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorophénols</td>
<td>Organique</td>
<td>88-06-2</td>
<td>CP ou ABN</td>
<td>18</td>
<td>1</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Composés aromatiques monocycliques Phénols chlorés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricyclohexylétain</td>
<td>Organique</td>
<td>3047-10-7</td>
<td>Organoétain</td>
<td>250</td>
<td>0,005</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Composés d’organoétain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluraline</td>
<td>Organique</td>
<td>1582-09-8</td>
<td>P ETH</td>
<td>0,2</td>
<td>0,01</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Pesticides de la famille des dichloroanilines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triphénylétain</td>
<td>Organique</td>
<td>56-35-9</td>
<td>Organoétain</td>
<td>0,022</td>
<td>0,005</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Composés d’organoétain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidité</td>
<td>Inorganique</td>
<td>N/D</td>
<td>APR</td>
<td>1 NTU</td>
<td>0,5 NTU</td>
<td>S/V</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td>Physique Turbidité, clarté et solides en suspension Matières particuliéres totales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>Inorganique</td>
<td>7440-61-1</td>
<td>Métaux</td>
<td>10 CCME 8,9 MECCO</td>
<td>1</td>
<td>23 CCME</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Métaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nom chimique (inorganiques en caractère gras)</td>
<td>Groupes chimiques</td>
<td>N° CAS</td>
<td>Groupe de paramètres</td>
<td>Critère le plus bas pour l'eau (µg/L)</td>
<td>SDL maximal recommandé pour l'eau (µg/L)</td>
<td>Critère le plus bas pour les sols et les sédiments (mg/kg)</td>
<td>SDL maximal recommandé pour les sols et les sédiments (mg/kg)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Inorganique Métaux</td>
<td>7440-62-2</td>
<td>Métaux</td>
<td>100 CCME 3,9 MECCO</td>
<td>1</td>
<td>130 CCME 86 MECCO</td>
<td>5</td>
</tr>
<tr>
<td>Xylènes</td>
<td>Organique Composés aromatiques monocycliques</td>
<td>1330-20-7</td>
<td>COV</td>
<td>30 CCME 72 MECCO</td>
<td>5</td>
<td>2,4 CCME 0,05 MECCO</td>
<td>0,1</td>
</tr>
<tr>
<td>Zinc</td>
<td>Inorganique Métaux</td>
<td>7440-66-6</td>
<td>Métaux</td>
<td>30 CCME 10* 160 MECCO</td>
<td>5</td>
<td>123 CCME 120 MECCO</td>
<td>10</td>
</tr>
</tbody>
</table>

N° CAS = Numéro de registre CAS
N/D = Non disponible ou non applicable.
S/V = Aucune valeur indiquée pour cet étalon.
APR = autres paramètres réglementés (énumérés dans la section 2.1.16 ou 2.2.2)
‡Le SDL est supérieur au plus bas critère pour cette matrice
†Le résultat le plus élevé pour la F4 ou la F4G est comparé au SDL.
*Critère le plus bas du document d'orientation concernant les recommandations fédérales intérimaires pour la qualité de l'eau pour les sites contaminés fédéraux, Mai 2010, Tableau 1
** Critère de sol le plus bas obtenu provenant du Standard pancanadien relatif aux hydrocarbures pétroliers dans le sol, approuvé par le CCME, 30 avril et 1er mai 2001, Winnipeg. Tableau 1 révisé en janvier 2008
*** Tableau sommaire du CCME http://st-ts.ccme.ca/fr/index.html et les feuillets d’information qui s’y rattachent
ANNEXE 2 PARTICIPANTS ET AFFILIATIONS

Directeur de projet du CCME pour le contrat 524-2012
Barry Loescher, PhD
Spécialiste des systèmes qualité, Maxxam Analytics

Participants

<table>
<thead>
<tr>
<th>Organismes gouvernementaux</th>
<th>Nom</th>
<th>Poste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affaires autochtones et Développement du Nord Canada Environment et ressources renouvelables Laboratoire environnemental sur la taïga</td>
<td>Helene Harper</td>
<td>Gestionnaire</td>
</tr>
<tr>
<td>Affaires autochtones et Développement du Nord Canada Environment et ressources renouvelables Laboratoire environnemental sur la taïga</td>
<td>Allan Yeoman</td>
<td>Technologue de laboratoire</td>
</tr>
<tr>
<td>Environnement et Changement climatique Canada Laboratoire national des essais environnementaux</td>
<td>Gino Sardella</td>
<td>Coordonnateur de projet/des dossiers à traiter</td>
</tr>
<tr>
<td>Environnement et Changement climatique Canada Laboratoire national des essais environnementaux</td>
<td>Ed Sverko</td>
<td>Chef – Laboratoire d’analyse organique</td>
</tr>
<tr>
<td>Laboratoire des services analytiques du ministère de l’Environnement du Nouveau-Brunswick</td>
<td>Roland Gaudet</td>
<td>Gestionnaire de l’Unité de chimie organique</td>
</tr>
<tr>
<td>Ministère de l’Environnement de l’Ontario Direction des services de laboratoire</td>
<td>Renee Luniewski</td>
<td>Coordonnatrice de projet/des dossiers à traiter</td>
</tr>
<tr>
<td>Ministère de l’Environnement de l’Ontario Direction des services de laboratoire</td>
<td>Dan Toner</td>
<td>Directeur adjoint</td>
</tr>
<tr>
<td>Centre d’expertise en analyse environnementale du Québec Ministère du Développement durable, de l’Environnement et des Parcs</td>
<td>Benoît Sarrasin</td>
<td>Contact avec les laboratoires</td>
</tr>
</tbody>
</table>

Laboratoires privés

<table>
<thead>
<tr>
<th>Nom</th>
<th>Poste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Garrand</td>
<td>Directeur général</td>
</tr>
<tr>
<td>Brian Fahlman</td>
<td>Chef d’équipe – Surveillance de l’environnement (chimie organique)</td>
</tr>
<tr>
<td>Barbara Kovacevich</td>
<td>Gestionnaire de la qualité</td>
</tr>
<tr>
<td>Ryan Rybchuk</td>
<td>Technologue principal</td>
</tr>
<tr>
<td>Mark Hugdahl</td>
<td>Directeur technique, Canada</td>
</tr>
<tr>
<td>Kim Jensen</td>
<td>Gestionnaire technique national, Canada</td>
</tr>
<tr>
<td>Coreen Hamilton</td>
<td>Spécialiste scientifique principale</td>
</tr>
<tr>
<td>Dale Hoover</td>
<td>Gestionnaire de l’assurance de la qualité</td>
</tr>
<tr>
<td>Stephen Varisco</td>
<td>Directeur technique</td>
</tr>
<tr>
<td>Darlene Lintott</td>
<td>Scientifique</td>
</tr>
</tbody>
</table>

Volume 4: Méthodes D’analyse 185
<table>
<thead>
<tr>
<th>Laboratoires privés</th>
<th>Nom</th>
<th>Poste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exova Canada Inc.</td>
<td>Anthony Neumann</td>
<td>Directeur de l’exploitation</td>
</tr>
<tr>
<td>Exova Canada Inc.</td>
<td>Randy Neumann</td>
<td>Vice-président, Exova Canada</td>
</tr>
<tr>
<td>Exova Canada Inc.</td>
<td>Chris Swyngedouw, PhD</td>
<td>Scientifique</td>
</tr>
<tr>
<td>Maxxam Analytics</td>
<td>Scott Cantwell</td>
<td>Directeur général, Alberta Operations</td>
</tr>
<tr>
<td>Maxxam Analytics</td>
<td>Ron Corkum</td>
<td>Directeur, COV, Mississauga</td>
</tr>
<tr>
<td>Maxxam Analytics</td>
<td>Barry Loescher, PhD</td>
<td>Spécialiste des systèmes qualité</td>
</tr>
<tr>
<td>Maxxam Analytics</td>
<td>Terry Obal, PhD</td>
<td>Directeur des services scientifiques</td>
</tr>
<tr>
<td>Maxxam Analytics</td>
<td>Alina Segal, PhD</td>
<td>Directeur, Semi-volatils, Mississauga</td>
</tr>
<tr>
<td>Maxxam Analytics</td>
<td>Ralph Siebert</td>
<td>Directeur, Inorganiques, Mississauga</td>
</tr>
<tr>
<td>Maxxam Analytics</td>
<td>Elizabeth Walsh</td>
<td>Rédactrice technique</td>
</tr>
<tr>
<td>Paracel Laboratories Ltd.</td>
<td>Dale Robertson</td>
<td>Directeur de laboratoire</td>
</tr>
<tr>
<td>SGS Canada Ltd.</td>
<td>Rob Irwin</td>
<td>Directeur technique, chimie inorganique</td>
</tr>
</tbody>
</table>